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PREFACE

 Control Systems Engineering is an exciting and challenging field and is a
multidisciplinary subject. This book is designed and organized around the concepts of control
systems engineering using MATLAB, as they have been developed in the frequency and time
domain for an introductory undergraduate or graduate course in control systems for engineer-
ing students of all disciplines.

Chapter 1 presents a brief introduction to control systems. The fundamental strategy of
controlling physical variables in systems is presented. Some of the terms commonly used to
describe the operation, analysis, and design of control systems are described.

An introduction to MATLAB basics is presented in Chapter 2. Chapter 2 also presents
MATLAB commands. MATLAB is considered as the software of choice. MATLAB can be used
interactively and has an inventory of routines, called as functions, which minimize the task of
programming even more. Further information on MATLAB can be obtained from: The
MathWorks, Inc., 3 Apple Hill Drive, Natick, MA 01760. In the computational aspects, MATLAB
has emerged as a very powerful tool for numerical computations involved in control systems
engineering. The idea of computer-aided design and analysis using MATLAB with the Symbolic
Math Tool box, and the Control System Tool box has been incorporated.

Chapter 3 consists of many solved problems that demonstrate the application of MATLAB
to the analysis and design of control systems. Presentations are limited to linear, time-invari-
ant continuous time systems.

Chapters 2 and 3 include a great number of worked examples and unsolved exercise
problems to guide the student to understand the basic principles and concepts in control sys-
tems engineering.

I sincerely hope that the final outcome of this book helps the students in developing an
appreciation for the topic of analysis and design of control systems.

An extensive bibliography to guide the student to further sources of information on con-
trol systems engineering is provided at the end of the book. All the end-of chapter problems are
fully solved in the Solution Manual available only to Instructors.

Rao V. Dukkipati
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Chapter 1
INTRODUCTION TO CONTROL SYSTEMS

��� ������	
����

Control systems in an interdisciplinary field covering many areas of engineering and
sciences. Control systems exist in many systems of engineering, sciences, and in human body.
Some type of control systems affects most aspects of our day-to-day activities. This chapter
presents a brief introduction and overview of control systems. Some of the terms commonly
used to describe the operation, analysis, and design of control systems are presented.

��� 
������
 �������

Control means to regulate, direct, command, or govern. A system is a collection, set, or
arrangement of elements (subsystems). A control system is an interconnection of components
forming a system configuration that will provide a desired system response. Hence, a control
system is an arrangement of physical components connected or related in such a manner as to
command, regulate, direct, or govern itself or another system.

In order to identify, delineate, or define a control system, we introduce two terms: input
and output here. The input is the stimulus, excitation, or command applied to a control system,
and the output is the actual response resulting from a control system. The output may or may
not be equal to the specified response implied by the input. Inputs could be physical variables or
abstract ones such as reference, set point or desired values for the output of the control system.
Control systems can have more than one input or output. The input and the output represent
the desired response and the actual response respectively. A control system provides an output
or response for a given input or stimulus, as shown in Fig. 1.1.

Control system
Input: stimulus

Desired response

Output: response

Actual response

Fig. 1.1 Description of a control system

The output may not be equal to the specified response implied by the input. If the output
and input are given, it is possible to identify or define the nature of the system’s components.
Broadly speaking, there are three basic types of control systems:

(a) Man-made control systems
(b) Natural, including biological-control systems
(c) Control systems whose components are both man-made and natural.

1



2 ANALYSIS AND DESIGN OF CONTROL SYSTEMS USING MATLAB

An electric switch is a man-made control system controlling the electricity-flow. The
simple act of pointing at an object with a finger requires a biological control system consisting
chiefly of eyes, the arm, hand and finger and the brain of a person, where the input is precise-
direction of the object with respect to some reference and the output is the actual pointed direc-
tion with respect to the same reference. The control system consisting of a person driving an
automobile has components, which are clearly both man-made and biological. The driver wants
to keep the automobile in the appropriate lane of the roadway. The driver accomplishes this by
constantly watching the direction of the automobile with respect to the direction of road. Fig.
1.2 is an alternate way of showing the basic entities in a general control system.

Control system
Objectives Results

Fig. 1.2 Components of a control system

In the steering control of an automobile for example, the direction of two front wheels
can be regarded as the result or controlled output variable and the direction of the steering
wheel as the actuating signal or objective. The control-system in this case is composed of the
steering mechanism and the dynamics of the entire automobile. As another example, consider
the idle-speed control of an automobile engine, where it is necessary to maintain the engine idle
speed at a relatively low-value (for fuel economy) regardless of the applied engine loads (like
air-conditioning, power steering, etc.). Without the idle-speed control, any sudden engine-load
application would cause a drop in engine speed that might cause the engine to stall. In this
case, throttle angle and load-torque are the inputs (objectives) and the engine-speed is the
output. The engine is the controlled process of the system. A few more applications of control-
systems can be found in the print wheel control of an electronic typewriter, the thermostati-
cally controlled heater or furnace which automatically regulates the temperature of a room or
enclosure, and the sun tracking control of solar collector dish.

Control system applications are found in robotics, space-vehicle systems, aircraft autopilots
and controls, ship and marine control systems, intercontinental missile guidance systems, au-
tomatic control systems for hydrofoils, surface-effect ships, and high-speed rail systems includ-
ing the magnetic levitation systems.

1.2.1 Examples of Control Systems

Control systems find numerous and widespread applications from everyday to extraordi-
nary in science, industry, and home. Here are a few examples:

(a) Residential heating and air-conditioning systems controlled by a thermostat
(b) The cruise (speed) control of an automobile
(c) Manual control:

(i) Opening or closing of a window for regulating air temperature or air quality
(ii) Activation of a light switch to regulate the illumination in a room

(iii) Human controlling the speed of an automobile by regulating the gas supply to
the engine

(d) Automatic traffic control (signal) system at roadway intersections
(e) Control system which automatically turns on a room lamp at dusk, and turns it off in

daylight
(f) Automatic hot water heater
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(g) Environmental test-chamber temperature control system
(h) An automatic positioning system for a missile launcher
(i) An automatic speed control for a field-controlled dc motor
(j) The attitude control system of a typical space vehicle
(k) Automatic position-control system of a high speed automated train system
(l) Human heart using a pacemaker

(m) An elevator-position control system used in high-rise multilevel buildings.

��� 
������
������
 
�����	�������

There are two control system configurations: open-loop control system and closed-loop
control system.

(a) Block. A block is a set of elements that can be grouped together, with overall charac-
teristics described by an input/output relationship as shown in Fig. 1.3. A block diagram is a
simplified pictorial representation of the cause-and-effect relationship between the input(s)
and output(s) of a physical system.

Physical components

within the block
Inputs Outputs

Block

Fig. 1.3 Block diagram

The simplest form of the block diagram is the single block as shown in Fig. 1.3. The input
and output characteristics of entire groups of elements within the block can be described by an
appropriate mathematical expressions as shown in Fig. 1.4.

Mathematical

expression
Inputs Outputs

Fig. 1.4 Block representation

(b) Transfer Function. The transfer function is a property of the system elements only,
and is not dependent on the excitation and initial conditions.  The transfer function of a system
(or a block) is defined as the ratio of output to input as shown in Fig.1.5.

Transfer function
Input Output

Fig. 1.5 Transfer function
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Transfer function =  
Output
Input

Transfer functions are generally used to represent a mathematical model of each block in
the block diagram representation. All the signals are transfer functions on the block diagrams.
For instance, the time function reference input is r(t), and its transfer function is R(s) where t is
time and s is the Laplace transform variable or complex frequency. Transfer functions can be
used to represent closed-loop as well as open-loop systems.

(c) Open-loop Control System. Open-loop control systems represent the simplest form
of controlling devices. A general block diagram of open-loop system is shown in Fig. 1.6.

Fig. 1.6 General block diagram of open-loop control system

(d) Closed-loop (Feedback Control) System. Closed-loop control systems derive their
valuable accurate reproduction of the input from feedback comparison. The general architec-
ture of a closed-loop control system is shown in Fig. 1.7. A system with one or more feedback
paths is called a closed-loop system.

Input
transducer

Gc(s) Gp(s)
Reference

Input
R(s)

Output
Controlled

variable
C(s)

Ea(s) +

Controller Plant or
process

Disturbance
input 1
D1(s)

Disturbance
input 2
D2(s)

H(s)

+
+

+
+

– Summing
junctionForward

path
Feedback

path

Output
transducer or

sensor

Summing
junction

Fig. 1.7 General block diagram of closed-loop control system
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The variables in Figs. 1.6 and 1.7 are defined as follows:
C(s) controlled output, transfer function of c(t)
D(s) disturbance input, transfer function of d(t)
Ea(s) actuating error, transfer function of ea(t)
Ga(s) transfer function of the actuator
Gc(s) transfer function of the controller
Gp(s) transfer function of the plant or process
H(s) transfer function of the sensor or output transducer = Gs(s)
R(s) reference input, transfer function of r(t).

R – B + AR

B

A

+

–

+
 R – B R + BR

B

+

+

R

B

+

–

(a) Two inputs                 (b) Two inputs                 (c) Three inputs
Fig. 1.8 Summing point

A
A

A

A
Takeoff point

A

A
A

A

Takeoff point

(a) (b)
Fig. 1.9 Takeoff point

Actuating or Error Signal. The actuating or error signal is the reference input signal
plus or minus the primary feedback signal.

Controlled Output C(s). The controlled output C(s) is the output variable of the plant
under the control of the control system.

Controller.  The elements of an open-loop control system can usually be divided into
two parts: controller and the controlled process. The controller drives a process or plant.

Disturbance or Noise Input. A disturbance or noise input is an undesired stimulus or
input signal affecting the value of the controlled output.

Feed Forward (Control) Elements. The feed forward (control) elements are the com-
ponents of the forward path that generate the control signal applied to the plant or process. The
feed forward (control) elements include controller(s), compensator(s), or equalization elements,
and amplifiers.
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Feedback Elements. The feedback elements establish the fundamental relationship
between the controlled output C(s) and the primary feedback signal B(s). They include sensors
of the controlled output, compensators, and controller elements.

Feedback Path. The feedback path is the transmission path from the controlled output
back to the summing point.

Forward Path. The forward path is the transmission path from the summing point to
the controlled output.

Input Transducer. Input transducer converts the form of input to that used by the
controller.

Loop. A loop is a path that originates and terminates on the same node , and along
which no other node is encountered more than once.

Loop Gain. The loop gain is the path gain of a loop.
Negative Feedback. Negative feedback implies that the summing point is a subtractor.
Path. A path is any collection of a continuous succession of branches traversed in the

same direction.
Path Gain. The product of the branch gains encountered in traversing a path is called

the path gain.
Plant, Process or Controlled System Gp(s). The plant, process, or controlled system

is the system, subsystem, process, or object controlled by the feedback control system. For ex-
ample, the plant can be a furnace system where the output variable is temperature.

Positive Feedback. Position feedback implies that the summing point is an adder.
Primary Feedback Signal. The primary feedback signal is a function of the controlled

output summed algebraically with the reference input to establish the actuating or error signal.
An open-loop system has no primary feedback signal.

Reference Input R(s). The reference input is an external signal applied to the control
system generally at the first summing input, so as to command a specified action of the process
or plant. It typically represents ideal or desired process or plant output response.

Summing Point. As shown in Fig. 1.8 the block is a small circle called a summing point
with the appropriate plus or minus sign associated with the arrows entering the circle. The
output is the algebraic sum of the inputs. There is no limit on the number of inputs entering a
summing point.

Takeoff Point. A takeoff point allows the same signal or variable as input to more than
one block or summing point, thus permitting the signal to proceed unaltered along several
different paths to several destinations as shown in Fig. 1.9.

Time Response. The time response of a system, subsystem, or element is the output as
a function of time, generally following the application of a prescribed input under specified
operating conditions.

Transducer. A transducer is a device that converts one energy form into another.

��� 
������
������

������

Control systems are sometimes divided into two classes : (a) Servomechanisms and
(b) Regulators.
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(a) Servomechanisms. Feedback control systems used to control position, velocity, and
acceleration are very common in industry and military applications. They are known as
servomechanisms. A servomechanism is a power-amplifying feedback control system in which
the controlled variable is a mechanical position or a time derivative of position such as velocity
or acceleration. An automatic aircraft landing system is an example of servomechanism. The
aircraft follows a ramp to the desired touchdown point. Another example is the control system
of an industrial robot in which the robot arm is forced to follow some desired path in space.

(b) Regulators. A regulator or regulating system is a feedback control system in which
the reference input or command is constant for long periods of time, generally for the entire
time interval during which the system is operational. Such an input is known as set point.  The
objective of the idle-speed control system is known as a regulator system. Another example of a
regulator control system is the human biological system that maintains the body temperature
at approximately 98.6ºF in an environment that usually has a different temperature.

1.5.1 Supplementary Terminology

(a) Linear System. A linear system is a system where input/ output relationships may be
represented by a linear differential equation. The plant is linear if it can be accu-
rately described using a set of linear differential equations. This attribute indicates
that system parameters do not vary as a function of signal level. For linear systems,
the equations that constitute the model are linear.

Similarly, the plant is a lumped-parameter (rather than distributed parameter) sys-
tem if it can be described using ordinary (rather than partial) differential equations.
This condition is generally accomplished if the physical size of the system is very
small in comparison to the wavelength of the highest frequency of interest.

(b) Time-Variant System. A time-variant is a system if the parameters vary as a function
of time. Thus, a time-variant system is a system described by a differential equation
with variable coefficients. A linear time variant system is described by linear differ-
ential equations with variable coefficients. Its derivatives appear as linear combina-
tions, but a coefficient or coefficients of terms may involve the independent variable.
A rocket-burning fuel system is an example of time variant system since the rocket
mass varies during the flight as the fuel is burned.

(c) Time-Invariant System. A time-invariant system is a system described by a differen-
tial equation with constant coefficients. Thus, the plant is time invariant if the pa-
rameters do not change as a function of time. A linear time invariant system is de-
scribed by linear differential equations with constant coefficients. A single degree of
freedom spring mass viscous damper system is an example of a time-invariant sys-
tem provided the characteristics of all the three components do not vary with time.

(d) Multivariable Feedback System. The block diagram representing a multivariable feed-
back system where the interrelationships of many controlled variables are consid-
ered is shown in Fig. 1.12.
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Fig. 1.12 Multivariable control system

��� ������
�
 �������

Feedback is the property of a closed-loop system, which allows the output to be compared
with the input to the system such that the appropriate control action may be formed as some
function of the input and output.

For more accurate and more adaptive control, a link or feedback must be provided from
output to the input of an open-loop control system. So the controlled signal should be fed back
and compared with the reference input, and an actuating signal proportional to the difference
of input and output must be sent through the system to correct the error. In general, feedback
is said to exist in a system when a closed sequence of cause-and-effect relations exists between
system variables. A closed-loop idle-speed control system is shown in Fig. 1.13. The reference
input Nr sets the desired idle-speed. The engine idle speed N should agree with the reference
value Nr and any difference such as the load-torque T is sensed by the speed-transducer and the
error detector. The controller will operate on the difference and provide a signal to adjust the
throttle angle to correct the error.

Control Engine

Speed

Nr

Error

N+
–

+

T

N

Fig. 1.13 Closed-loop idle-speed control system

��� ��������
��
������
�

The most important features, the presence of feedback impacts to a system are the fol-
lowing:

(a) Increased accuracy: its ability to reproduce the input accurately.
(b) Reduced sensitivity of the ratio of output to input for variations in system character-

istics and other parameters.
(c) Reduced effects of nonlinearties and distortion.
(d) Increased bandwidth (bandwidth of a system that ranges frequencies (input) over

which the system will respond satisfactorily).
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(e) Tendency towards oscillation or instability.
(f) Reduced effects of external disturbances or noise.
A system is said to be unstable, if its output is out of control. Feedback control systems

may be classified in a number of ways, depending upon the purpose of classification. For in-
stance, according to the method of analysis and design, control-systems are classified as linear
or non-linear, time-varying or time-variant systems. According to the types of signals used in
the system, they may be: continuous data and discrete-data system or modulated and
unmodulated systems.

Consider the simple feedback configuration shown in Fig. 1.14, where R is the input
signal, C is the output signal, E is error, and B is feedback signal.

The parameters G and H are constant-gains. By simple algebraic manipulations, it can
be shown that the input-output relation of the system is given by

M = 
C
R

 = 
G

1 + GH
...(1.1)

The general effect of feedback is that it may increase or decrease the gain G. In practical
control-systems, G and H are functions of frequency, so the magnitude of (1 + GH) is greater
than 1 in one frequency range, but less than 1 in another. Thus feedback affects the gain G of a
nonfeedback system by a factor (1 + GH).

G

H

+

–
C

+

–
R

+

+

–B
E

Fig. 1.14 Feedback system

If GH = – 1, the output of the system is infinite for any finite input, such a state is called
unstable system-state. Alternatively feedback stabilizes an unstable system and the sensitivity
of a gain of the overall system M to the variation in G is defined as:

M
GS = 

∂
∂
M/M
G/G

 = 
Percentage change in M
Percentage change in G

...(1.2)

where ∂ M denotes incremental change in M due to incremental change in G(∂G). One can write
sensitivity-function as:

M
GS  = 

∂
∂
M/M
G/G

 = 
1

1 + GH
...(1.3)

By increasing GH, the magnitude of the sensitivity-function is made arbitrarily small.

��� 
������
������
 ��������
 ���
������
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Control systems engineering consists of analysis and design of control systems configu-
rations. Control systems are dynamic, in that they respond to an input by first undergoing a
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transient response before attaining a steady-state response which corresponds to the input.
There are three main objectives of control systems analysis and design. They are:

1. Producing the response to a transient disturbance which is acceptable
2. Minimizing the steady-state errors: Here, the concern is about the accuracy of the

steady-state response
3. Achieving stability: Control systems must be designed to be stable. Their natural re-

sponse should decay to a zero values as time approaches infinity, or oscillate.
System analysis means the investigation, under specified condition, of the performance

of a system whose mathematical model is known. Analysis is investigation of the properties and
performance of an existing control system.

By synthesis we mean using an explicit procedure to find a system that will perform in a
specified way. System design refers to the process of finding a system that accomplishes a given
task. Design is the selection and arrangement of the control system components to perform a
prescribed task. The design of control systems is accomplished in two ways : design by analysis
in which the characteristics of an existing or standard system configuration are modified, and
design by synthesis, in which the form of the control system is obtained directly from its speci-
fications.

��� �	�����

A basic control system has an input, a process, and an output. The basic objective of a
control system is of regulating the value of some physical variable or causing that variable to
change in a prescribed manner in time. Control systems are typically classified as open loop or
closed-loop. Open-loop control systems do not monitor or correct the output for disturbances
whereas closed-loop control systems do monitor the output and compare it with the input. In a
closed-loop control system if an error is detected, the system corrects the output and thereby
corrects the effects of disturbances. In closed-loop control systems, the system uses feedback,
which is the process of measuring a control variable and returning the output to influence the
value of the variable.

Block diagrams display the operational units of a control system. Each block in a compo-
nent block diagram represent some major component of the control system, such as measure-
ment, compensation, error detection, and the plant itself. It also depicts the major directions of
information and energy flow from one component to another in a control system.

A block can represent the component or process to be controlled. Each block of a control
system has a transfer function (represented by differential equations) and defines the block
output as a function of the input.

Control system design and analysis objectives include: producing the response to a tran-
sient disturbance follows a specified pattern (over-damped or under damped), minimizing the
steady-state errors, and achieving the stability.
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GLOSSARY OF TERMS

Terminology used frequently in the field of control systems is compiled here from various
sources.

Action of the Controller: Another term used to describe the controller operations is
the action of a controller.

Actuating or Error Signal: The actuating or error signal is the reference input signal
plus or minus the primary feedback signal.

Actuator: The device that causes the process to provide the output. The device that
provides the motive power to the process.

Angle of Departure: The angle at which a locus leaves a complex pole in the s-plane.
Asymptote: The path the root locus follows as the parameter becomes very large and

approaches infinity. The number of asymptotes is equal to the number of poles minus the number
of zeros.

Automatic Control System: A control system that is self-regulating, without any hu-
man intervention.

Automatic: Self-action without any human intervention.
Bandwidth: The frequency at which the frequency response has declined 3 dB from its

low-frequency value.
Block Diagram: A block diagram is a simplified pictorial representation of the cause-

and-effect relationship between the input(s) and output(s) of a physical system.
Block: A block is a set of elements that can be grouped together with overall character-

istics described by an input/output relationship.
Block-Diagram Representation: In a block-diagram representation, each component

(or subsystem) is represented as a rectangular block containing one input and one output in a
block diagram.
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Bode Diagram (Plot): A sinusoidal frequency response plot, where the magnitude re-
sponse is plotted separately from the phase response. The magnitude plot is dB versus log ω,
and the phase plot is phase versus log w. IN control systems, the Bode plot is usually made for
the open-loop transfer function. Bode plots can also be drawn as straight-line approximations.

Bode Plot: The logarithm of the magnitude of the transfer function is plotted versus the
logarithm of ω, the frequency. The phase, φ, of the transfer function is separately plotted versus
the logarithm of the frequency.

Branches: Individual loci are referred to as branches of the root locus. Also, lines that
represent subsystems in a signal-flow graph.

Break Frequency: A frequency where the Bode magnitude plot changes slope.
Breakaway Point: A point on the real axis of the s-plane where the root locus leaves

the real axis and enters the complex plane.
Break-in Point: A point on the real axis of the s-plane where the root locus enters the

real axis from the complex plane.
Cascade Control: Two feedback controllers arranged in such a fashion that the output

of one feedback controller becomes an input to the second controller.
Characteristic Equation: The resulting expression obtained when the denominator of

the transfer function of the system is set equal to zero is known as the characteristic equation.
Closed-Loop Control System: A control system in which the control (regulating ac-

tion) is influenced by the output.
Closed-Loop Feedback Control System: A system that uses a measurement of the

output and compares it with the desired output.
Closed-Loop Frequency Response: The frequency response of the closed-loop trans-

fer function T (jω).
Closed-Loop System: A system with a measurement of the output signal and a com-

parison with the desired output to generate an error signal that is applied to the actuator.
Closed-Loop Transfer Function: For a generic feedback system with G(s) in the for-

ward path and H(s) in the feedback path, the closed-loop transfer function, T(s), is G(s)/[1 ±
G(s)H(s)], where the + is for negative feedback, and the – is for positive feedback.

Compensation: The term compensation is usually used to indicate the process of in-
creasing accuracy and speeding up the response.

Compensator: An additional component or circuit that is inserted into the system to
compensate for a performance deficiency.

Configuration Space: Generally speaking, generalized coordinates, qi (i = 1, 2, …, n)
define an n-dimensional Cartesian space that is referred to as the configuration space.

Constant M Circles: The locus of constant, closed-loop magnitude frequency response
for unity feedback systems. It allows the closed-loop magnitude frequency response to be deter-
mined from the open-loop magnitude frequency response.

Constant N Circles: The locus of constant, closed-loop phase frequency response for
unity feedback systems. It allows the closed-loop phase frequency response to be determined
from the open-loop phase frequency response.

Continuous-Time Control Systems: Continuous-time control systems or continuous-
data control systems or analog control systems contain or process only continuous-time (or ana-
log) signals and components.
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Contour Map: A contour or trajectory in one plane is mapped into another plane by a
relation F(s).

Control System: A control system is an interconnection of components forming a sys-
tem configuration that will provide a desired system response.

Control: Control means to regulate, direct, command, or govern.
Controllability: A property of a system by which an input can be found that takes every

state variable from a desired initial state to a desired final state in finite time.

Controllable System: A system is controllable on the interval [t0, tf] if there exists a
continuous input u(t) such that any initial state x(t0) can be driven to any arbitrary trial state
x(tf) in a finite time interval tf – t0 > 0.

Controlled Output C(s): The controlled output C(s) is the output variable of the plant
under the control of the system.

Controlled Variable: The output of a plant or process that the system is controlling for
the purpose of desired transient response, stability and steady-state error characteristics.

Controller Action: The method by which the automatic controller produces the control
signal is known as the control action.

Controller: The subsystem that generates the input to the plant or process.
Corner Frequency: See break frequency.
Critical Damping: The case where damping is on the boundary between underdamped

and overdamped.
Critically Damped Response: The step response of a second-order system with a given

natural frequency that is characterized by no overshoot and a rise time that is faster than any
possible overdamped response with the same natural frequency.

Damped Frequency of Oscillation: The sinusoidal frequency of oscillation of an
underdamped response.

Damped Natural Frequency: The frequency at which the system oscillates before set-
tling down.

Damped Oscillation: An oscillation in which the amplitude decreases with time.
Damping Ratio: The ratio of the exponential decay frequency to the natural frequency.
dc Motor: An electric actuator that uses an input voltage as a control variable.
Decade: Frequencies that are separated by a factor of 10.
Decibel (dB): The decibel is defined as 10 log PG, where PG is the power gain of a signal.

Equivalently, the decibel is also 20 log VG, where VG is the voltage gain of a signal.
Decoupled System: A state-space representation in which each state equation is a func-

tion of only one state variable. Hence, each differential equation can be solved independently of
the other equations.

Delay Time: The delay time td is the time needed for the response to reach half the final
value the very first time. The delay time is interpreted as a time domain specification, is often,
defined as the time required for the response to a unit step input to reach 50% of its final value.

Delayed Step Function: A function of time (F(t – a)) that has a zero magnitude before
t = a and a constant amplitude after that.

Design of a Control System: The arrangement or the plan of the system structure and
the selection of suitable components and parameters.



INTRODUCTION TO CONTROL SYSTEM 15

Design Specifications: A set of prescribed performance criteria.
Design: The term design is used to encompass the entire process of basic system modifi-

cation so as to meet the requirements of stability, accuracy, and transient response.
Digital Control System: A control system using digital signals and a digital computer

to control a process.
Digital Signal: A signal which is defined at only discrete (distinct) instants of the inde-

pendent variable t is called a discrete-time or a discrete-data or a sampled-data or a digital
signal.

Digital-to-Analog Converter: A device that converts digital signals to analog signals.
Direct System: See Open-loop system.
Discrete-Time Approximation: An approximation used to obtain the time response of

a system based on the division of the time into small increments, ∆t.
Discrete-Time Control Systems: Discrete-time control system, or discrete-data control

system or sampled-data control system has discrete-time signals or components at one or more
points in the system.

Disturbance or Noise Input: A disturbance or noise input is an undesired stimulus or
input signal affecting the value of the controlled output.

Disturbance Signal: An unwanted input signal that affects the system’s output signal.
Disturbance: An unwanted signal that corrupts the input or output of a plant or proc-

ess.
Dominant Poles: The poles that predominantly generate the transient response.
Dominant Roots: The roots of the characteristic equation that cause the dominant tran-

sient response of the system.
Eigenvalues: Any value, λi, that satisfies Axi = λixi for xi ≠ 0. Hence, any value, λi, that

makes xi an eigenvector under the transformation A.
Eigenvector: Any vector that is collinear with a new basis vector after a similarity

transformation to a diagonal system.
Electric Circuit Analog: An electrical network whose variables and parameters are

analogous to another physical system. The electric circuit analog can be used to solve for vari-
ables of the other physical system.

Electrical Impedance: The ratio of the Laplace transform of the voltage to the Laplace
transform of the current.

Element (Component): Smallest part of a system that can be treated as a whole (entity).
Engineering Design: The process of designing a technical system.
Equilibrium: The steady-state solution characterized by a constant position or oscilla-

tion.
Error Signal: The difference between the desired output, R(s), and the actual output,

Y(s). Therefore E(s) =  R(s) – Y(s).
Error: The difference between the input and output of a system.
Feed Forward (Control) Element: The feed forward (control) elements are the com-

ponents of the forward path that generate the control signal applied to the plant or process. The
feed forward (control) elements include controller(s), compensator(s), or equalization elements,
and amplifiers.
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Feedback Compensator: A subsystem placed in a feedback path for the purpose of
improving the performance of a closed-loop system.

Feedback Elements: The feedback elements establish the fundamental relationship
between the controlled output C(s) and the primary feedback signal B(s). They include sensors
of the controlled output, compensators, and controller elements.

Feedback Path:  The feedback path is the transmission path from the controlled output
back to the summing point.

Feedback Signal: A measure of the output of the system used for feedback to control
the system.

Feedback: Feedback is the property of a closed-loop control system which allows the
output to be compared with the input to the system such that the appropriate control action
may be formed as some function of the input and output.

Flyball Governor: A mechanical device for controlling the speed of a steam engine.
Forced Response: For linear systems, that part of the total response function due to

the input. It is typically of the same form as the input and its derivatives.
Forward Path: A forward path is a path that connects a source node to a sink node, in

which no node is encountered more than once.
Forward-Path Gain: The product of gains found by traversing a path that follows the

direction of signal flow from the input node to the output node of a signal-flow graph.
Fourier Transform: The transformation of a function of time, f(t), into the frequency

domain.
Frequency Domain Techniques: A method of analyzing and designing linear control

systems by using transfer functions and the Laplace transform as well as frequency response
techniques.

Frequency Response Techniques: A method of analyzing and designing control sys-
tems by using the sinusoidal frequency response characteristics of a system.

Frequency Response: The steady-state response of a system to a sinusoidal input signal.
Gain Crossover Frequency: The frequency at which the open loop gain drops to 0 dB

(gain of 1).
Gain Margin: The gain margin is the factor by which the gain factor K can be multiplied

before the closed-loop system becomes unstable. It is defined as the magnitude of the reciprocal
of the open-loop transfer function evaluated at the frequency ω2 at which the phase angle is –180º.

Gain: The gain of a branch is the transmission function of that branch when the
transmission function is a multiplicative operator.

Heat Capacitance: The capacity of an object to store heat.
Ideal Derivative Compensator: See proportional-plus-derivative controller.
Ideal Integral Compensator: See proportional-plus-integral controller.
Input Transducer: Input transducer converts the form of input to that used by the

controller.
Input: The input is the stimulus, excitation, or command applied to a control system,

generally from an external source, so as to produce a specified response from the control system.
Instability: The characteristic of a system defined by a natural response that grows

without bounds as time approaches infinity.
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Integration Network: A network that acts, in part, like an integrator.
Kirchhoff’s Law: The sum of voltages around a closed loop equals zero. Also, the sum of

currents at a node equals zero.
Lag Compensator: A transfer function, characterized by a pole on the negative real

axis close to the origin and a zero close and to the left of the pole, that is used for the purpose of
improving the steady-state error of a closed-loop system.

Lag Network: See Phase-lag network.
Lag-Lead Compensator: A transfer function, characterized by a pole-zero configura-

tion that is the combination of a lag and a lead compensator, that is used for the purpose of
improving both the transient response and the steady-state error of a closed-loop system.

Laplace Transform: A transformation of a function f(t)  from the time domain into the
complex frequency domain yielding F(s).

Laplace Transformation: A transformation that transforms linear differential equa-
tions into algebraic expressions. The transformation is especially useful for modeling, analyzing,
and designing control systems as well as solving linear differential equations.

Lead Compensator: A transfer function, characterized by a zero on the negative real
axis and a pole to the left of the zero, that is used for the purpose of improving the transient
response of a closed-loop system.

Lead Network: See Phase-lead network.
Lead-Lag Network: A network with the characteristics of both a lead network and a

lag network.
Linear Approximation: An approximate model that results in a linear relationship

between the output and the input of the device.
Linear Combination: A linear combination of n variables, xi, for i = 1 to n, given by the

following sum, S.
Linear System: A linear system is a system where input/output relationships may be

represented by a linear differential equation.
Linearization: The process of approximating a nonlinear differential equation with a

linear differential equation valid for small excursions about equilibrium.
Locus: Locus is defined as a set of all points satisfying a set of conditions.
Logarithmic Magnitude: The logarithmic of the magnitude of the transfer function,

20 log10 |G|.
Logarithmic Plot: See Bode plot.
Loop Gain: For a signal-flow graph, the product of branch gains found by traversing a

path that starts at a node and ends at the same node without passing through any other node
more than once, and following the direction of the signal flow.

Loop: A loop is a closed path (with all arrowheads in the same direction) in which no
node is encountered more than once. Hence, a source node cannot be a part of a loop, since each
node in the loop must have at least one branch into the node and at least one branch out.

Major-Loop Compensation: A method of feedback compensation that adds a compen-
sating zero to the open-loop transfer function for the purpose of improving the transient re-
sponse of the closed-loop system.

Manual Control System: A control system regulated through human intervention.
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Marginal Stability: The characteristic of a system defined by a natural response that
neither decays nor grows, but remains constant or oscillates as time approaches infinity as long
as the input is not of the same form as the system’s natural response.

Marginally Stable System: A closed-loop control system in which roots of the charac-
teristic equation lie on the imaginary axis; for all practical purposes, an unstable system.

Mason’s Loop Rule: A rule that enables the user to obtain a transfer function by trac-
ing paths and loops within a system.

Mason’s Gain Formula: Mason’s gain formula is an alternative method of reducing
complex block diagrams into a single block diagram with its associated transfer function for
linear systems by inspection.

Mason’s Rule: A formula from which the transfer function of a system consisting of the
interconnection of multiple subsystems can be found.

Mathematical Model: An equation or set of equations that define the relationship be-
tween the input and output (variables).

Maximum Overshoot Mp: The maximum overshoot is the vertical distance between
the maximum peak of the response curve and the horizontal line from unity (final value).

Maximum Value of the Frequency Response: A pair of complex poles will result in a
maximum value for the frequency response occurring at the resonant frequency.

Minimum Phase: All the zeros of a transfer function lie in the left-hand side of the
s-plane.

Minor-Loop Compensation: A method of feedback compensation that changes the poles
of a forward-path transfer function for the purpose of improving the transient response of the
closed-loop system.

Multiple-Input, Multiple-Output (MIMO) System: A multiple-input, multiple-out-
put (MIMO) system is a system where several parameters may be entered as input and output
is represented by multiple variables.

Multivariable Control System: A system with more than one input variable or more
than one output variable.

Multivariable Feedback System: The multivariable feedback system where the in-
terrelationships of many controlled variables are considered.

Natural Frequency: The frequency of oscillation of a system if all the damping is
removed.

Natural Response: That part of the total response function due to the system and the
way the system acquires or dissipates energy.

Negative Feedback: The case where a feedback signal is subtracted from a previous
signal in the forward path.

Neutral Zone: The region of error over which the controller does not change its output;
also known as dead band or error band.

Nichols Chart: Nichols chart is basically a transformation of the M- and N-circles on
the polar plot into noncircular M and N contours on a db magnitude versus phase angle plot in
rectangular coordinates.

Nodes: In a signal-flow graph, the internal signals in the diagram, such as the common
input to several blocks or the output of summing junction, are called nodes.

Nonminimum Phase: Transfer functions with zeros in the right-hand s-plane.
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Nonminimum-Phase System: A system whose transfer function has zeros in the right
half-plane. The step response is characterized by an initial reversal in direction.

Nontouching Loops: Loops that do not have any nodes in common.
Nontouching: Two loops are nontouching if these loops have no nodes in common. A

loop and a path are nontouching if they have no nodes in common.
Nontouching-Loop Gain: The product of loop gains from nontouching loops taken two,

three, and four, and so on at a time.
Number of Separate Loci: Equal to the number of poles of the transfer function, as-

suming that the number of poles is greater than or equal to the number of zeros of the transfer
function.

Noise Input: A disturbance or noise input is an undesired stimulus or input signal
affecting the value of the controlled output.

Nyquist Criterion: If a contour, A, that encircles the entire right half-plane is mapped
through G(s)H(s), then the number of closed-loop poles, Z, in the right half-plane equals the
number of open-loop poles, P, that are in the right half-plane minus the number of
counterclockwise revolutions, N, around – 1, of the mapping; that is, Z = P – N. The mapping is
called the Nyquist diagram of G(s)H(s).

Nyquist Diagram (Plot): A polar frequency response plot made for the open-loop transfer
function.

Nyquist Path: The locus of the points in the s-plane mapped into G(s)-plane in Nyquist
plots is called Nyquist path.

Nyquist Stability Criterion: The Nyquist stability criterion establishes the number of
poles and zeros of 1 + GH(s) that lie in the right-half plane directly from the Nyquist stability
plot of GH(s).

Observability: A property of a system by which an initial state vector, x(t0), can be
found from u(f) and y(t) measured over a finite interval of time from t0. Simply stated, observ-
ability is the property by which the state variables can be estimated from a knowledge of the
input, u(i), and output, y(t).

Observable System: A system is observable on the interval [t0, tf] if any initial state
x(t0) is uniquely determined by observing the output y(t) on the interval [t0, tf].

Observer: A system configuration from which inaccessible states can be estimated.
Octave: Frequencies that are separated by a factor of two.
Open-Loop Control System: A system that utilizes a device to control the process

without using feedback. Thus the output has no effect upon the signal to the process.
Open-Loop System: A system without feedback that directly generates the output in

response to an input signal.
Open-Loop Transfer Function: For a generic feedback system with G(s) in the for-

ward path and H(s) in the feedback path, the open-loop transfer function is the product of the
forward-path transfer function and the feedback transfer function, or, G(s)H(s).

Output Equation: For linear systems, the equation that expresses the output variables
of a system as linear combinations of the state variables.

Output: The output is the actual response resulting from a control system.
Overdamped Response: A step response of a second-order system that is character-

ized by no overshoot.
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Overshoot: The amount by which the system output response proceeds beyond the de-
sired response.

Parameter Design: A method of selecting one or two parameters using the root locus
method.

Partial-Fraction Expansion: A mathematical equation where a fraction with n factors
in its denominator is represented as the sum of simpler fractions.

Path Gain: The path gain is the product of the transfer functions of all branches that
form the path.

Path: A path is a sequence of connected blocks, the route passing from one variable to
another in the direction of signal flow of the blocks without including any variable more than
once.

Peak Time: The peak time tp is the time required for the response to reach the first peak
of the overshoot.

Peak Value: The maximum value of the output, reached after application of the unit
step input after time tp.

Percent Overshoot, %OS: The amount that the underdamped step response overshoots
the steady state, or final, value at the peak time, expressed as a percentage of the steady-state
value.

Performance Index: A quantitative measure of the performance of a system.
Phase Crossover Frequency:  The frequency at which the open loop phase angle drops

to – 180°.
Phase Margin: The amount of additional open-loop phase shift required at unity gain to

make the closed-loop system unstable.
Phase Variables: State variables such that each subsequent state variable is the de-

rivative of the previous state variable.
Phase-Lag Network: A network that provides a negative phase angle and a significant

attenuation over the frequency range of interest.
Phase-Lead Network: A network that provides a positive phase angle over the fre-

quency range of interest. Thus phase lead can be used to cause a system to have an adequate
phase margin.

Phase-Margin Frequency: The frequency at which the magnitude frequency response
plot equals zero dB. It is the frequency at which the phase margin is measured.

Phase-Margin: Phase margin of a stable system is the amount of additional phase log
required to bring the system to point of instability.

PI Controller: Controller with a proportional term and an integral term (Proportional-
Integral).

Pickoff Point: A block diagram symbol that shows the distribution of one signal to
multiple subsystems.

PID Controller: A controller with three terms in which the output is the sum of a
proportional term, an integrating term, and a differentiating term, with an adjustable gain for
each term.

Plant, Process or Controlled System Gp(s): The plant, process, or controlled system
is the system, subsystem, process, or object controlled by the feedback control system. For ex-
ample, the plant can be a furnace system where the output variable is temperature.
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Plant: See Process.
Polar Plot: A plot of the real part of G(jω) versus the imaginary part of G(jω).
Pole of a Transfer Function: The root (solution) of the (characteristic) equation ob-

tained by setting the denominator polynomial of the transfer function equal to zero; the value of
s that makes (the value of) the transfer function approach infinity (hence the term pole (rising
to infinity)); complex poles always appear as complex conjugate pairs.

Poles: (1) The values of the Laplace transform variable, s, that cause the transfer func-
tion to become infinite, and (2) any roots of factors of the characteristic equation in the denomi-
nator that are common to the numerator of the transfer function.

Pole-Zero Map: The s-plane including the locations of the finite poles and zeros of F(s)
is called the pole-zero map of F(s).

Positive Feedback: Positive feedback implies that the summing point is an adder.
Primary Feedback Signal: The primary feedback signal is a function of the controlled

output summed algebraically with the reference input to establish the actuating or error signal.
An open-loop system has no primary feedback signal.

Process Controller: See PID controller.
Process: The device, plant, or system under control.
Productivity: The ratio of physical output to physical input of an industrial process.
Proportional Band: The maximum percent error that will cause a change in controller

output from minimum (0%) to maximum (100%).
Proportional-Plus-Derivative (PD) Controller: A controller that feeds forward to

the plant a proportion of the actuating signal plus its derivative for the purpose of improving
the transient response of a closed-loop system.

Proportional-Plus-Integral (PI) Controller: A controller that feeds forward to the
plant a proportion of the actuating signal plus its integral for the purpose of improving the
steady-state error of a closed-loop system.

Proportional-Plus-Integral-Plus-Derivative (PID) Controller: A controller that
feeds forward to the plant a proportion of the actuating signal plus its integral plus its deriva-
tive for the purpose of improving the transient response and steady-state error of a closed-loop
system.

Pulse Function: The difference between a step function and a delayed step function.
Ramp Function: A function whose amplitude increases linearly with time.
Reference Input R(s): The reference input is an external signal applied to the control

system generally at the first summing point, so as to command a specific action of the processor
plant. It typically represents ideal or desired process or plant output response.

Relative Stability: The property that is measured by the relative real part of each root
or pair of roots of the characteristic equation.

Residue: The constants in the numerators of the terms in a partial-fraction expansion.
Resonant Frequency: The resonant frequency of a system is defined as the radian

frequency at which the magnitude value of C(jω)/R(jω) occurs.
Rise Time: The rise time tr is customarily defined as the time required for the response

to a unit step input to rise from 10 to 90% of its final value. For underdamped second-order
system, the 0% to 100% rise time is normally used. For overdamped systems, the 10% to 90%
rise time is common.
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Risk: Uncertainties embodied in the unintended consequences of a design.
Robot: Programmable computers integrated with a manipulator. A reprogrammable,

multifunctional manipulator used for a variety of tasks.
Robust Control System: A system that exhibits the desired performance in the pres-

ence of significant plant uncertainty.
Root Locus Method: The method for determining the locus of roots of the characteris-

tic equation 1 + KP(s) = 0 as K varies from 0 to infinity.
Root Locus Segments on the Real Axis: The root locus lying in a section of the real

axis to the left of an odd number of poles and zeros.
Root Sensitivity: The sensitivity of the roots as a parameter changes from its normal

value. The root sensitivity is the incremental change in the root divided by the proportional
change of the parameter.

Root: The term root refers to the roots of the characteristic equation, which are the poles
of the closed-loop transfer function.

Root-Locus Analysis: The root-locus method is an analytical method for displaying the
location of the poles of the closed-loop transfer function G/(1 + GH) as a function of the gain
factor K of the open-loop transfer function GH. The method is called the root-locus analysis.

Root-Locus: Root-locus defines a graph of the poles of the closed-loop transfer function
as the system parameter, such as the gain is varied.

Routh-Hurwitz Stability Criterion: The Routh-Hurwitz stability criterion states that
the dynamic system is stable if both of the following conditions are satisfied: (1) all the coeffi-
cients of the characteristic equation are positive, and (2) all the elements of the first column of
the Routh-Hurwitz table are positive.

Self-Loop: A self-loop is a feedback loop consisting of a single branch.
Sensitivity: The sensitivity of a system is defined as the ratio of the percentage change

in the system-transfer function to the percentage-change of the process transfer function. In
practice, the system sensitivity is expressed as the ratio of the percentage-variation in some
specific quantity like gain to the percentage change in one of the system parameters.

Settling Time: The time required for the system output to settle within a certain per-
centage of the input amplitude.

Signal Flow Graph: A signal flow graph is a pictorial representation of the simultane-
ous equations describing a system. The signal flow graph displays the transmission of signals
through the system just as in the block diagram.

Similarity Transformation: A transformation from one state-space representation to
another state-space representation. Although the state variables are different, each represen-
tation is a valid description of the same system and the relationship between the input and
output.

Single-Input, Single-Output (SISO) System: A single-input, single-output (SISO)
system is a system where only one parameter enters as input and only one-parameter results
as the output.

Sink Node: A sink node is a node for which signals flow only toward the node. Also
known as output node.

Sinusoidal Function: A function of time, which is periodically changing.
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  Source Node: A source node is a node for which signals flow only away from the node.
Hence, for the branches connected to a source node, the arrowheads are all directed away from
the node. Also known as input node.

Specifications: Statements that explicitly state what the device or product is to be and
to do. A set of prescribed performance criteria.

Stability: That characteristic of a system defined by a natural response that decays to
zero as time approaches infinity.

Stabilization: The term stabilization is used to indicate the process of achieving the
requirements of stability alone.

Stable Closed-Loop System: A system in which the open-loop gain is less than 0 db at
a frequency at which the phase angle has reached –180°.

Stable System: A dynamic system with a bounded system response to a bounded input.

State Differential Equation: The differential equation for the state vector: �x  = Ax + Bu.
State Equations: A set of n simultaneous, first-order differential equations with n vari-

ables, where the n variables to be solved are the state variables.
State of a System: A set of numbers such that the knowledge of these numbers and the

input function will, with the equations describing the dynamics, provide the future state of the
system.

State Space: The n-dimensional space whose axes are the state variables.
State Variable Equations: When a system’s equations of motion are rewritten as a

system of first-order differential equations, each of these differential equations consists of the
time derivative of the one of the state variables on the left-hand side and an algebraic function
of the state variables as well as system outputs, on the right-hand side. These differential
equations are referred to as state-variable equations.

State Variable Feedback: Occurs when the control signal, u, for the process is a direct
function of all the state variables.

State Variables: State variables are the variables, which define the smallest set of vari-
ables, which determine the state of a system.

State Vector: State vector is a vector, which completely describes a system’s dynamics
in terms of its n-state variables.

State: The property (condition) of a system.
State-Space Representation: A mathematical model for a system that consists of

simultaneous, first-order differential equations and an output equation.
State-Transition Matrix: The matrix that performs a transformation on x(0), taking x

from the initial state, x(0), to the state x(f) at any time, t ≥ 0.
Static Error Constants: The collection of position constant, velocity constant, and ac-

celeration constant.
Steady-State Error: The difference between the input and output of a system after the

natural response has decayed to zero.
Steady-State Response: The system response after the transients have died and out-

put has settled (time response after transient response).
Step Function:  A function of time, which has a zero value before t = 0 and has a con-

stant value for all time t ≥ 0.
Subsystem: A system that is a portion of a larger system.
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Summing Junction: A block diagram symbol that shows the algebraic summation of
two or more signals.

Summing Point: The summing point also known as a summing joint is the block used to
represent the addition/subtraction of signals. It is represented as a small circle connected to
arrows representing signal lines.

Synthesis: The process by which new physical configurations are created. The combin-
ing of separate elements or devices to form a coherent whole.

System Type: The number of pure integrations in the forward path of a unity feedback
system.

System Variables: Any variable that responds to an input or initial conditions in a
system.

System: A system is a collection, set, or arrangement of elements (subsystems).
Takeoff Point: A takeoff point allows the same signal or variable as input to more than

one block or summing point, thus permitting the signal to proceed unaltered along several
different paths to several destinations. It is represented as a dot (solid circle) with arrows point-
ing away from it.

The Addition Rule: The value of the variable designated by a node is equal to the sum
of all the signals entering the node.

The Design Specifications: The design specifications for control systems generally
include several time-response indices for a specified input as well as a desired steady-state
accuracy.

The Multiplication Rule: A single cascaded (series) connection of (n – 1) branches with
transmission functions G21, G32, G43, …, Gn(n – 1) can be replaced by a single branch with a new
transmission function equal to the product of the original ones.

The Steady-State Response: The steady-state response is that which exists a long
time following any input signal initiation.

The Transient-Response: The transient-response is the response that disappears with
time.

The Transmission Rule: The value of the variable designated by a node is transmitted
on every branch leaving that node.

Time Delay: A pure time delay, T, so that events occurring at time t at one point in the
system occur at another point in the system at a later time, t + T.

Time Domain: The mathematical domain that incorporates the time response and the
description of a system in terms of time t.

Time Response: The time response of a system, subsystem, or element is the output as
a function of time, generally, following application of a prescribed input under specified operat-
ing conditions.

Time-Domain Representation: See state-space representation.
Time-Invariant System: A system described by a differential equation with constant

coefficients.
Time-Variant System: A system described by a differential equation with variable co-

efficients.
Time-Varying System: A system for which one or more parameters may vary with

time.
Total Response: The response of a system from the time of application of an input to

the point when time approaches infinity.
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Trade-off: The result of making a judgment about how much compromise must be made
between conflicting criteria.

Transducer: A device that converts a signal from one form to another, for example,
from a mechanical displacement to an electrical voltage.

Transfer Function in the Frequency Domain: The ratio of the output to the input
signal where the input is a sinusoid. It is expressed as G(jω).

Transfer Function: The transfer function of a system (or a block) is defined as the ratio
of output to input.

Transient Response: That parts of the response curve due to the system and the way
the system acquires or dissipates energy. In stable systems, it is the part of the response plot
prior to the steady-state response.

Undamped Response: The step response of a second-order system that is character-
ized by a pure oscillation.

Underdamped Response: The step response of a second-order system that is charac-
terized by overshoot.

Unit Step Function:  A function of time that has zero magnitude before time t = 0 and
unit magnitude after that.

Unstable System: A closed-loop control system in which one or more roots of the char-
acteristic equation lie in the RHP (Right-Hand side of the s-Plane).

Zero of a Transfer Function: The root (solution) of the equation obtained by setting
the numerator polynomial of the transfer function equal to 0; the value of s that makes (the
value of) the transfer function equal to zero (hence the term zero).

Zeros: (1) Those values of the Laplace transform variable, s, that cause the transfer
function to become zero, and (2) any roots of factors of the numerator that are common to the
characteristic equation in the denominator of the transfer function.

Zero-State Response: That part of the response that depends only upon the input and
not the initial state vector.



Chapter 2
MATLAB BASICS
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This Chapter is a brief introduction to MATLAB (an abbreviation of MATrix LABoratory)
basics, registered trademark of computer software, version 4.0 or later developed by the Math
Works Inc. The software is widely used in many of science and engineering fields. MATLAB is
an interactive program for numerical computation and data visualization. MATLAB is sup-
ported on Unix, Macintosh, and Windows environments. For more information on MATLAB,
contact The MathWorks.Com. A Windows version of MATLAB is assumed here. The syntax is
very similar for the DOS version.

MATLAB integrates mathematical computing, visualization, and a powerful language to
provide a flexible environment for technical computing.  The open architecture makes it easy to
use MATLAB and its companion products to explore data, create algorithms, and create custom
tools that provide early insights and competitive advantages.

Known for its highly optimized matrix and vector calculations, MATLAB offers an intui-
tive language for expressing problems and their solutions both mathematically and visually.
Typical uses include:

• Numeric computation and algorithm development
• Symbolic computation (with the built-in Symbolic Math functions)
• Modeling, simulation, and prototyping
• Data analysis and signal processing
• Engineering graphics and scientific visualization
In this chapter, we will introduce the MATLAB environment. We will learn how to cre-

ate, edit, save, run, and debug m-files (ASCII files with series of MATLAB statements). We will
see how to create arrays (matrices and vectors), and explore the built-in MATLAB linear alge-
bra functions for matrix and vector multiplication, dot and cross products, transpose, determi-
nants, and inverses, and for the solution of linear equations. MATLAB is based on the language
C, but is generally much easier to use. We will also see how to program logic constructs and
loops in MATLAB, how to use subprograms and functions, how to use comments (%) for ex-
plaining the programs and tabs for easy readability, and how to print and plot graphics both
two and three dimensional. MATLAB’s functions for symbolic mathematics are presented. Use
of these functions to perform symbolic operations, to develop closed form expressions for solu-
tions to algebraic equations, ordinary differential equations, and system of equations was pre-
sented. Symbolic mathematics can also be used to determine analytical expressions for the
derivative and integral of an expression.

26



MATLAB BASICS 27

2.1.1 Starting and Quitting MATLAB
To start MATLAB click on the MATLAB icon or type in MATLAB, followed by pressing

the enter or return key at the system prompt. The screen will produce the MATLAB prompt >>
(or EDU >>), which indicates that MATLAB is waiting for a command to be entered.

In order to quit MATLAB, type quit or exit after the prompt, followed by pressing the
enter or return key.

2.1.2 Display Windows
MATLAB has three display windows. They are
1. A Command Window which is used to enter commands and data to display plots and

graphs.
2. A Graphics Window which is used to display plots and graphs
3. An Edit Window which is used to create and modify M-files. M-files are files that

contain a program or script of MATLAB commands.

2.1.3 Entering Commands
Every command has to be followed by a carriage return <cr> (enter key) in order that the

command can be executed. MATLAB commands are case sensitive and lower case letters are
used throughout.

To execute an M-file (such as Project_1.m), simply enter the name of the file without its
extension (as in Project_1).

2.1.4 MATLAB Expo
In order to see some of the MATLAB capabilities, enter the demo command. This will

initiate the MATLAB EXPO. MATLAB Expo is a graphical demonstration environment that
shows some of the different types of operations which can be conducted with MATLAB.

2.1.5 Abort
In order to abort a command in MATLAB, hold down the control key and press c to

generate a local abort with MATLAB.

2.1.6 The Semicolon (;)
If a semicolon (;) is typed at the end of a command the output of the command is not

displayed.

2.1.7 Typing %
When percent symbol (%) is typed in the beginning of a line, the line is designated as a

comment. When the enter key is pressed the line is not executed.

2.1.8 The clc Command
Typing clc command and pressing enter cleans the command window. Once the clc com-

mand is executed a clear window is displayed.

2.1.9 Help
MATLAB has a host of built-in functions. For a complete list, refer to MATLAB user’s

guide or refer to the on line Help. To obtain help on a particular topic in the list, e.g., inverse,
type help inv.
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2.1.10 Statements and Variables
Statements have the form

>> variable = expression
The equals (“=”) sign implies the assignment of the expression to the variable. For in-

stance, to enter a 2 × 2 matrix with a variable name A, we write
>> A == [1 2 ; 3 4] <ret>

The statement is executed after the carriage return (or enter) key is pressed to display
A =

1 2
3 4
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The symbols for arithmetic operations with scalars are summarized below in Table 2.1.
Table 2.1

Arithmetic operation Symbol Example

Addition + 6 + 3 = 9
Subtraction – 6 – 3 = 3
Multiplication * 6 * 3 = 18
Right division / 6 / 3 = 2
Left division \ 6 \ 3 = 3 / 6 = 1 / 2
Exponentiation ^ 6 ^ 3 (63 = 216)

��� 	��������������

MATLAB has several different screen output formats for displaying numbers. These
formats can be found by typing the help command: help format in the Command Window. A few
of these formats are shown in Table 2.2 for 2π.

Table 2.2  Display formats

Command Description Example

Format short Fixed-point with >> 351/7
4 decimal digits ans = 50.1429

Format long Fixed-point with >> 351/7
14 decimal digits ans = 50.14285714285715

Format short e Scientific notation with >> 351/7
4 decimal digits ans = 5.0143e+001

Format long e Scientific notation with 15 >> 351/7
decimal digits ans = 5.014285714285715e001
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Command Description Example

Format short g Best of 5 digit fixed >> 351/7
or floating point ans = 50.143

Format long g Best of 15 digit fixed >> 351/7
or floating point ans = 50.1428571428571

Format bank Two decimal digits >> 351/7
ans = 50.14

Format compact Eliminates empty lines to allow more lines with information
displayed on the screen

Format loose Adds empty lines (opposite of compact)

��� ��������������
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MATLAB contains a number of functions for performing computations which require the
use of logarithms, elementary math functions, and trigonometric math functions. List of these
commonly used elementary MATLAB mathematical built-in functions are given in Tables 2.3
to 2.8.

Table 2.3  Common Math Functions

Function Description

abs(x) Computes the absolute value of x.
sqrt(x) Computes the square root of x.
round(x) Rounds x to the nearest integer.
fix(x) Rounds (or truncates) x to the nearest integer toward 0.
floor(x) Rounds x to the nearest integer toward – ∞.
ceil(x) Rounds x to the nearest integer toward ∞.
sign(x) Returns a value of – 1 if x is less than 0, a value of 0 if x equals 0, and a

value of 1 otherwise.
rem(x,y) Returns the remainder of x/y. for example, rem(25, 4) is 1, and rem(100,

21) is 16. This function is also called a modulus function.
exp(x) Computes ex, where e is the base for natural logarithms, or approxi-

mately 2.718282.
log(x) Computes ln x, the natural logarithm of x to the base e.
log10(x) Computes log10 x, the common logarithm of x to the base 10.

Table 2.4  Exponential functions

Function Description

exp(x) Exponential (ex)
log(x) Natural logarithm
log10(x) Base 10 logarithm
sqrt(x) Square root
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Table 2.5  Trigonometric and hyperbolic functions

Function Description

sin(x) Computes the sine of x, where x is in radians.
cos(x) Computes the cosine of x, where x is in radians.
tan(x) Computes the tangent of x, where x is in radians.
asin(x) Computes the arcsine or inverse sine of x, where x must be between – 1 and

1. The function returns an angle in radians between – π/2 and π/2.

acos(x) Computes the arccosine or inverse cosine of x, where x must be between  – 1
and 1. The function returns an angle in radians between 0 and π.

atan(x) Computes the arctangent or inverse tangent of x. The function returns an
angle in radians between – π/2 and π/2.

atan2(y, x) Computes the arctangent or inverse tangent of the value y/x. The function
returns an angle in radians that will be between – π and π, depending on the
signs of x and y.

sinh(x) Computes the hyperbolic sine of x, which is equal to  
2

x xe e−−
.

cosh(x) Computes the hyperbolic cosine of x, which is equal to  
2

x xe e−+
.

tanh(x) Computes the hyperbolic tangent of x, which is equal to  sinh
cosh

x
x

.

asinh(x) Computes the inverse hyperbolic sine of x, which is equal to ln(x + 2 1x + ).

acosh(x) Computes the inverse hyperbolic cosine of x, which is equal to  ln(x + 2 1x − ).

atanh(x) Computes the inverse hyperbolic tangent of x, which is equal to ln 
1
1

x
x

+
−

for |x| ≤ 1.

Table 2.6  Round-off functions

Function Description Example

round(x) Round to the nearest integer >> round(20/6) ans = 3

fix(x) Round towards zero >> fix(13/6) ans = 2

ceil(x) Round towards infinity >> ceil(13/5) ans = 3

floor(x) Round towards minus infinity >> floor(– 10/4) ans = – 3

rem(x, y) Returns the remainder after >> rem(14,3) ans = 2
x is divided by y

sign(x, y) Signum function. Returns 1 >> sign(7) ans = 1
if x > 0, – 1 if x < 0, and 0 if
x – 0.
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Table 2.7  Complex number functions

Function Description

conj(x) Computes the complex conjugate of the complex number x. Thus, if x
is equal to a + i b, then conj(x) will be equal to a – i b.

real(x) Computes the real portion of the complex number x.
imag(x) Computes the imaginary portion of the complex number x.
abs(x) Computes the absolute value of magnitude of the complex number x.
angle(x) Computes the angle using the value of atan2(imag(x), real(x)); thus,

the angle value is between – π and π.

Table 2.8  Arithmetic operations with complex numbers

Operation Result

c1 + c2 (a1 + a2) + i(b1 + b2)

c1 + c2 (a1 – a2) + i(b1 – b2)

c1 • c2 (a1a2 – b1b2) + i(a1b2 – a2b1)

1

2

c
c

1 2 1 2
2 2
2 2

a a b b

a b

 +
  + 

 + i
 −
  + 

2 1 2 1
2 2
2 2

a b b a

a b

|c1|  2 2
1 1a b+  (magnitude or absolute value of c1)

c1* a1 – ib1 (conjugate of c1)

(Assume that c1 = a1 + ib1 and c2 = a2 + ib2)

��� ��������������

A variable is a name made of a letter or a combination of several letters and digits.
Variable names can be up to 63 (in MATLAB 7) characters long (31 characters on MATLAB
6.0). MATLAB is case sensitive. For instance, XX, Xx, xX, and xx are the names of four different
variables. It should be noted here that not to use the names of a built-in functions for a variable.
For instance, avoid using: sin, cos, exp, sqrt, ..., etc. Once a function name is used to define a
variable, the function cannot be used.

��� ���	�����	� ���������

MATLAB includes a number of predefined variables. Some of the predefined variables
that are available to use in MATLAB programs are summarized in Table 2.9.
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Table 2.9  Predefined variables

Predefined variable Description
in MATLAB

ans Represents a value computed by an expression but not stored in
variable name.

pi Represents the number π.
eps Represents the floating-point precision for the computer being

used. This is the smallest difference between two numbers.
inf Represents infinity which for instance occurs as a result of a divi-

sion by zero. A warning message will be displayed or the value
will be printed as ∞.

i Defined as  1− , which is: 0 + 1.0000i.

j Same as i.
NaN Stands for Not a Number. Typically occurs as a result of an ex-

pression being undefined, as in the case of division of zero by
zero.

clock Represents the current time in a six-element row vector contain-
ing year, month, day, hour, minute, and seconds.

date Represents the current date in a character string format.

��� ������	��������������� ���������

Table 2.10 lists commands that can be used to eliminate variables or to obtain informa-
tion about variables that have been created. The procedure is to enter the command in the
Command Window and the Enter key is to be pressed.

Table 2.10  Commands for managing variables

Command Description

clear Removes all variables from the memory.
clear x, y, z Clears/removes only variables x, y, and z from the memory.
who Lists the variables currently in the workspace.
whos Displays a list of the variables currently in the memory and their

size together with information about their bytes and class.

��� ��������������	�

In Tables 2.11 to 2.15 the useful general commands on on-line help, workspace informa-
tion, directory information, and general information are given.
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Table 2.11  On-line help

Function Description

help Lists topics on which help is available.
helpwin Opens the interactive help window.
helpdesk Opens the web browser based help facility.
help topic Provides help on topic.
lookfor string Lists help topics containing string.
demo Runs the demo program.

Table 2.12  Workspace information

Function Description

who Lists variables currently in the workspace.
whos Lists variables currently in the workspace with their size.
what Lists m-, mat-, and mex-files on the disk.
clear Clears the workspace, all variables are removed.
clear x y z Clears only variables x, y, and z.
clear all Clears all variables and functions from workspace.
mlock fun Locks function fun so that clear cannot remove it.
munlock fun Unlocks function fun so that clear can remove it.
clc Clears command window, command history is lost.
home Same as clc.
clf Clears figure window.

Table 2.13  Directory information

Function Description

pwd Shows the current working directory.
cd Changes the current working directory.
dir Lists contents of the current directory.
ls Lists contents of the current directory, same as dir.
path Gets or sets MATLAB search path.
editpath Modifies MATLAB search path.
copyfile Copies a file.
mkdir Creates a directory.

Table 2.14  General information
Function Description

computer Tells you the computer type you are using.
clock Gives you wall clock time and date as a vector.
date Tells you the date as a string.
more Controls the paged output according to the screen size.
ver Gives the license and the version information about MATLAB installed

on your computer.
bench Benchmarks your computer on running MATLAB compared to other com-

puters.
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Table 2.15  Termination

Function Description

c (Control-c) Local abort, kills the current command execution.
quit Quits MATLAB.
exit Same as quit.
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An array is a list of numbers arranged in rows and/or columns. A one-dimensional array
is a row or a column of numbers and a two-dimensional array has a set of numbers arranged in
rows and columns. An array operation is performed element-by-element.

2.9.1 Row Vector
A vector is a row or column of elements.
In a row vector the elements are entered with a space or a comma between the elements

inside the square brackets. For example,
x = [7 – 1  2  – 5  8]

2.9.2 Column Vector
In a column vector the elements are entered with a semicolon between the elements

inside the square brackets. For example,
x = [7 ;  – 1 ;  2 ;  – 5 ;  8]

2.9.3 Matrix
A matrix is a two-dimensional array which has numbers in rows and columns. A matrix

is entered row-wise with consecutive elements of a row separated by a space or a comma, and
the rows separated by semicolons or carriage returns. The entire matrix is enclosed within
square brackets. The elements of the matrix may be real numbers or complex numbers. For
example to enter the matrix,

A = 
1 3 4
0 2 8

− 
 − 

The MATLAB input command is
A = [1  3  – 4 ; 0  – 2  8]

Similarly for complex number elements of a matrix B

B = 
5 ln 2 7 sin 3

3 5 13
x x y

i i

− + 
 − 

The MATLAB input command is
B = [– 5 * x     log(2 * x) + 7 * sin (3 * y)  ;  3i   5 – 13i]
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2.9.4 Addressing Arrays
A colon can be used in MATLAB to address a range of elements in a vector or a matrix.

2.9.4.1  Colon for a vector
Va(:) – refers to all the elements of the vector Va (either a row or a column vector).
Va(m : n) – refers to elements m through n of the vector Va.
For instance

>> V = [2  5  – 1  11  8  4  7  – 3  11]
>> u = V(2 : 8)

u = 5  – 1  11  8  4  7  – 3  11

2.9.4.2  Colon for a matrix
Table 2.16 gives the use of a colon in addressing arrays in a matrix.

Table 2.16 Colon use for a matrix

Command Description

A(:, n) Refers to the elements in all the rows of a column n of the matrix A.
A(n, :) Refers to the elements in all the columns of row n of the matrix A.
A(:, m : n) Refers to the elements in all the rows between columns m and n of the

matrix A.
A(m : n, :) Refers to the elements in all the columns between rows m and n of the

matrix A.
A(m : n, p : q) Refers to the elements in rows m through n and columns p through q of

the matrix A.

2.9.5 Adding Elements to a Vector or a Matrix
A variable that exists as a vector, or a matrix, can be changed by adding elements to it.

Addition of elements is done by assigning values of the additional elements, or by appending
existing variables. Rows and/or columns can be added to an existing matrix by assigning values
to the new rows or columns.

2.9.6 Deleting Elements
An element, or a range of elements, of an existing variable can be deleted by reassigning

blanks to these elements. This is done simply by the use of square brackets with nothing typed
in between them.

2.9.7 Built-in Functions
Some of the built-in functions available in MATLAB for managing and handling arrays

as listed in Table 2.17.
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Table 2.17  Built-in functions for handling arrays

Function Description Example

length (A) Returns the number of elements >> A = [5  9  2  4] ;
in the vector A >> length(A)

ans = 4

size (A) Returns a row vector [m, n], where >>A = [2 3 0 8 11 ; 6 17 5 7 1]
m and n are the size m × n of the A =
array A. 2  3  0  8  11

6 17 5  7  1
>> size(A)
ans = 2  5

reshape (A, m, n) Rearrange a matrix A that has r >> A = [3 1 4 ; 9 0 7]
rows and s columns to have m A =
rows and n columns. r times s must 3 1 4
be equal to m times n. 9 0 7

>> B = reshape(A, 3, 2)
B =

3  0
9  4
1  7

diag (v) When v is a vector, creates a square >> v = [3 2 1];
matrix with the elements of v in the >> A = diag(v)
diagonal A =

3  0  0
0  2  0
0  0  1

diag (A) When A is a matrix, creates a vector
from the diagonal elements of A. >> A = [1 8 3 ; 4 2 6 ; 7 8 3]

A =
1  8  3
4  2  6
7  8  3

>> vec = diag(A)
vec =

1
2
3
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We consider here matrices that have more than one row and more than one column.

2.10.1  Addition and Subtraction of Matrices
The addition (the sum) or the subtraction (the difference) of the two arrays is obtained by

adding or subtracting their corresponding elements. These operations are performed with arrays
of identical size (same number of rows and columns).

For example if A and B are two arrays (2 × 3 matrices).

A = 1311 12

2321 22

aa a

aa a
 
 
 

 and B = 1311 12

2321 22

bb b

bb b
 
 
 

Then, the matrix addition (A + B) is obtained by adding A and B is

13 1311 11 12 12

23 2321 21 22 22

a ba b a b
a ba b a b

++ + 
 ++ + 

2.10.2  Dot Product
The dot product is a scalar computed from two vectors of the same size. The scalar is the

sum of the products of the values in corresponding positions in the vectors.
For n elements in the vectors A and B:

dot product = A • B =  
1

n

i i
i

a b
=
∑

dot(A, B) Computes the dot product of A and B. If A and B are matrices, the dot product
is a row vector containing the dot products for the corresponding columns of A and B.

2.10.3  Array Multiplication

The value in position ci,  j of the product C of two matrices, A and B, is the dot product of
row i of the first matrix and column of the second matrix:

ci, j = , ,
1

n

i k k j
k

a b
=
∑ .

 2.10.4  Array Division

The division operation can be explained by means of the identity matrix and the inverse
matrix operation.

2.10.5  Identity Matrix

An identity matrix is a square matrix in which all the diagonal elements are 1’s, and the
remaining elements are 0’s. If a matrix A is square, then it can be multiplied by the identity
matrix, I, from the left or from the right:

AI = IA = A
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2.10.6  Inverse of a Matrix
The matrix B is the inverse of the matrix A if when the two matrices are multiplied the

product is the identity matrix. Both matrices A and B must be square and the order of multipli-
cation can be AB or BA.

AB = BA = I

2.10.7  Transpose
The transpose of a matrix is a new matrix in which the rows of the original matrix are the

columns of the new matrix. The transpose of a given matrix A is denoted by AT. In MATLAB,
the transpose of the matrix A is denoted by A′.

2.10.8  Determinant
A determinant is a scalar computed from the entries in a square matrix. For a 2 × 2

matrix A, the determinant is
|A | = a11 a22 – a21 a12

MATLAB will compute the determinant of a matrix using the det function:
det(A) computes the determinant of a square matrix A.

2.10.9  Array Division
MATLAB has two types of array division, which are the left division and the right divi-

sion.

2.10.10  Left Division
The left division is used to solve the matrix equation Ax = B where x and B are column

vectors. Multiplying both sides of this equation by the inverse of A, A–1, we have
A–1Ax = A–1 B

or Ix = x = A–1 B
Hence x = A–1 B
In MATLAB, the above equation is written by using the left division character:

x = A \ B

2.10.11  Right Division
The right division is used to solve the matrix equation xA = B where x and B are row

vectors. Multiplying both sides of this equation by the inverse of A, A–1, we have
x • AA–1 = B • A–1

or x = B • A–1

In MATLAB, this equation is written by using the right division character:
x = B \ A

2.10.12  Eigenvalues and Eigenvectors
Consider the following equation,

AX = λX ...(2.1)
Where A is an n × n square matrix, X is a column vector with n rows and λ is a scalar.
The values of λ for which X are nonzero are called the eigenvalues of the matrix A, and

the corresponding values of X are called the eigenvectors of the matrix A.
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Eq. (2.1) can also be used to find the following equation
(A – λI)X = 0 ...(2.2)

where I is an n × n identity matrix. Eq. (2.2) corresponding to a set of homogeneous equations
and has nontrivial solutions only if the determinant is equal to zero, or

|A – λI| = 0 ...(2.3)
Eq. (2.3) is known as the characteristic equation of the matrix A. The solution to Eq. (2.3)

gives the eigenvalues of the matrix A.
MATLAB determines both the eigenvalues and eigenvectors for a matrix A.
eig(A) Computes a column vector containing the eigenvalues of A.
[Q, d] = eig(A)  Computes a square matrix Q containing the eigenvectors of A as col-

umns and a square matrix d containing the eigenvalues (λ) of A on the diagonal. The values of
Q and d are such that Q * Q is the identity matrix and A * X equals λ times X.

Triangular factorization or lower-upper factorization: Triangular or lower-upper
factorization expresses a square matrix as the product of two triangular matrices – a lower
triangular matrix and an upper triangular matrix. The lu function in MATLAB computes the
LU factorization:

[L, U] = lu(A)  Computes a permuted lower triangular factor in L and an upper triangu-
lar factor in U such that the product of L and U is equal to A.

QR factorization: The QR factorization method factors a matrix A into the product of
an orthonormal matrix and an upper-triangular matrix. The qr function is used to perform the
QR factorization in MATLAB:

[Q, R] = qr(A)  Computes the values of Q and R such that A = QR.Q will be an orthonormal
matrix, and R will be an upper triangular matrix.

For a matrix A of size m × n, the size of Q is m × m, and the size of R is m × n.
Singular Value Decomposition (SVD): Singular value decomposition decomposes a

matrix A (size m × n) into a product of three matrix factors.
A = USV

where U and V are orthogonal matrices and S is a diagonal matrix. The size of U is m × m, the
size of V is n × n, and the size of S is m × n. The values on the diagonal matrix S are called
singular values. The number of nonzero singular values is equal to the rank of the matrix.

The SVD factorization can be obtained using the svd function:
[U, S, V] = svd(A)  Computes the factorization of A into the product of three matrices,

USV, where U and V are orthogonal matrices and S is a diagonal matrix.
svd(A) Returns the diagonal elements of S, which are the singular values of A.
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Element-by-element operations can only be done with arrays of the same size. Element-
by-element multiplication, division, and exponentiation of two vectors or matrices is entered in
MATLAB by typing a period in front of the arithmetic operator. Table 2.18 lists these opera-
tions.
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Table 2.18  Element-by-element operations

Arithmetic operators

Matrix operators Array operators

+ Addition + Addition
– Subtraction – Subtraction
* Multiplication •* Array multiplication
^ Exponentiation •^ Array exponentiation
/ Left division •/ Array left division
\ Right division •\ Array right division

2.11.1  Built-in Functions for Arrays
Table 2.19 lists some of the many built-in functions available in MATLAB for analyzing

arrays.
Table 2.19  MATLAB built-in array functions

Function Description Example

mean (A) If A is a vector, returns the mean >> A = [3  7  2  16];
value of the elements >> mean (A)

ans = 14

C = max (A) If A is a vector, C is the largest >> A = [3 7 2 16 9 5 18 13 0 4];
element in A. If A is a matrix, C is a >> C = max (A)
row vector containing the largest C = 18
element of each column of A.

[d, n] = max (A) If A is a vector, d is the largest >> [d, n] = max (A)
element in A, n is the position of d = 18
the element (the first if several have
the max value). n = 7

min (A) The same as max(A), but for the >> A = [3  7  2  16];
smallest element. >> min (A)

ans = 2
[d, n] = min (A) The same as [d, n] = max(A), but

for the smallest element.

sum (A) If A is a vector, returns the sum of >> A = [3  7  2  16];
the elements of the vector. >> sum (A)

ans = 28
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Function Description Example

sort (A) If A is a vector, arranges the elements >> A = [3  7  2  16];
of the vector in ascending order. >> sort (A)

ans = 2  3  7  16

median (A) If A is a vector, returns the median >> A = [3  7  2  16];
value of the elements of the vector. >> median (A)

ans = 5

std (A) If A is a vector, returns the standard >> A = [3  7  2  16];
deviation of the elements of the >> std (A)
vector. ans = 6.3770

det (A) Returns the determinant of a square >> A = [1  2  3  4];
matrix A. >> det (A)

ans = – 2

dot (a, b) Calculates the scalar (dot) product of >> a = [5  6  7];
two vectors a and b. The vector can >> b = [4  3  2];
each be row or column vectors. >> dot (a, b)

ans = 52

cross (a, b) Calculates the cross product of two >> a = [5  6  7];
vectors a and b, (a × b). The two >> b = [4  3  2];
vectors must have 3 elements >> cross (a, b)

ans = – 9   18   – 9

inv (A) Returns the inverse of a square >> a = [1 2 3; 4 6 8; – 1 2 3];
matrix A. >> inv (A)

ans =
– 0.5000    0.0000   – 0.5000
– 5.0000    1.5000     1.0000

  3.5000  – 1.0000   – 0.5000
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There are many physical processes and engineering applications that require the use of
random numbers in the development of a solution.

MATLAB has two commands rand and rand n that can be used to assign random num-
bers to variables.

The rand command: The rand command generates uniformly distributed over the in-
terval [0, 1]. A seed value is used to initiate a random sequence of values. The seed value is
initially set to zero. However, it can be changed with the seed function.

The command can be used to assign these numbers to a scalar, a vector, or a matrix, as
shown in Table 2.20.
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Table 2.20  The rand command

Command Description Example

rand Generates a single random number >> rand
between 0 and 1. ans =

0.9501

rand (1, n) Generates an n elements row vector of >> a = rand(1, 3)
random numbers between 0 and 1. a =

0.4565   0.0185   0.8214

rand (n) Generates an n × n matrix with >> b = rand(3)
random numbers between 0 and 1. b =

0.7382   0.9355   0.8936
0.1763   0.9165   0.0579
0.4057   0.4103   0.3529

rand (m, n) Generates an m × n matrix with >> c = rand(2, 3)
random numbers between 0 and 1. c =

0.2028   0.6038   0.1988
0.1987   0.2722   0.0153

randperm (n) Generates a row vector with n >> randperm(7)
elements that are random permutation ans =
of integers 1 through n. 5  2  4  7  1  6  3

2.12.1  The Random Command

MATLAB will generate Gaussian values with a mean of zero and a variance of 1.0 if a
normal distribution is specified. The MATLAB functions for generating Gaussian values are as
follows:

randn(n) Generates an n × n matrix containing Gaussian (or normal) random numbers
with a mean of 0 and a variance of 1.

Randn(m, n) Generates an m × n matrix containing Gaussian (or normal) random num-
bers with a mean of 0 and a variance of 1.
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A polynomial is a function of a single variable that can be expressed in the following
form:

f(x) = a0x
n + a1x

n–1 + a2x
n–2 + … + an–1x

1 + an

where the variable is x and the coefficients of the polynomial are represented by the values a0,
a1, … and so on. The degree of a polynomial is equal to the largest value used as an exponent.

A vector represents a polynomial in MATLAB. When entering the data in MATLAB,
simply enter each coefficient of the polynomial into the vector in descending order. For exam-
ple, consider the polynomial



MATLAB BASICS 43

5s5 + 7s4 + 2s2 – 6s + 10
To enter this into MATLAB , we enter this as a vector as

>> x = [5 7 0 2 – 6 10]
x =

5 7 0 2 – 6 10

It is necessary to enter the coefficients of all the terms.

MATLAB contains functions that perform polynomial multiplication and division, which
are listed below:

conv(a, b) Computes a coefficient vector that contains the coefficients of the

product of polynomials represented by the coefficients in a and b.

The vectors a and b do not have to be the same size.

[q, r] = deconv(n, d) Returns two vectors. The first vector contains the coefficients of

the quotient and the second vector contains the coefficients of the

remainder polynomial.

The MATLAB function for determining the roots of a polynomial is the roots function:

root(a) Determines the roots of the polynomial represented by the coefficient vector a.

The roots function returns a column vector containing the roots of the polynomial; the
number of roots is equal to the degree of the polynomial. When the roots of a polynomial are
known, the coefficients of the polynomial are determined when all the linear terms are multi-
plied, we can use the poly function:

poly(r) Determines the coefficients of the polynomial whose roots are contained in the
vector r.

The output of the function is a row vector containing the polynomial coefficients.

The value of a polynomial can be computed using the polyval function, polyval (a, x). It
evaluates a polynomial with coefficients a for the values in x. The result is a matrix the same
size ad x. For instance, to find the value of the above polynomial at s = 2,

>> x = polyval([5 7 0 2 – 6 10], 2)

x =

278

To find the roots of the above polynomial, we enter the command roots (a) which deter-
mines the roots of the polynomial represented by the coefficient vector a.

>>roots([5  7  0   2  – 6  10])

ans =

– 1.8652

– 0.4641 + 1.0832i

– 0.4641 – 1.0832i

 0.6967 + 0.5355i

0.6967 – 0.5355i
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% or
>> x = [5 7 0 2 – 6 10]
x =

5 7 0 2 – 6 10
>> r = roots(x)
r =

– 1.8652
– 0.4641 + 1.0832i
– 0.4641 – 1.0832i

 0.6967 + 0.5355i
 0.6967 – 0.5355i

To multiply two polynomials together, we enter the command conv.
The polynomials are: x = 2x + 5 and y = x2 + 3x + 7

>>x = [2 5];
>>y = [1 3 7];
>>z = conv(x, y)

z =
 2  11  29  35

To divide two polynomials, we use the command deconv.
z = [2 11 29 35]; x = [2 5]

>> [g, t] = deconv (z, x)
g = 1  3  7
 t =  0     0     0     0
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A system of equations is nonsingular if the matrix A containing the coefficients of the
equations is nonsingular. A system of nonsingular simultaneous linear equations (AX = B) can
be solved using two methods:

(a) Matrix Division Method.

(b) Matrix Inversion Method.

2.14.1 Matrix Division

The solution to the matrix equation AX = B is obtained using matrix division, or X = A/B.
The vector X then contains the values of x.

2.14.2 Matrix Inverse

For the solution of the matrix equation AX = B, we premultiply both sides of the equation
by A–1.

A–1AX = A–1B
or IX = A–1B
where I is the identity matrix.
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Hence X = A–1B
In MATLAB, we use the command x = inv (A) * B. Similarly, for XA = B, we use the

command x = B*inv (A).
The basic computational unit in MATLAB is the matrix. A matrix expression is enclosed

in square brackets, [ ]. Blanks or commas separate the column elements, and semicolons or
carriage returns separate the rows.

>>A = [1 2 3 4 ;  5 6 7 8 ;  9 10 11 12]
    A =

1 2 3 4
5 6 7 8
9 10 11 12

The transpose of a simple matrix or a complex matrix is obtained by using the apostrophe
key

>>B = A′
B =

1 5 9
2 6 10
3 7 11
4 8 12

Matrix multiplication is accomplished as follows:
>>C = A * B
C =

30 70 110
70 174 278
110 278 446

>>C = B * A
C =

107 122 137 152
122 140 158 176
137 158 179 200
152 176 200 224

The inverse of a matrix D is obtained as
>>D = [1 2 ; 3 4]

D =
1 2
3 4

>>E = inv (D)
E =

– 2.0000  1.0000
1.5000 – 0.5000
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Similarly, its eigenvalue is
>>eig (D)
ans =

– 0.3723
  5.3723

Matrix operations require that the matrix dimensions be compatible. If A is an n × m and
B is a p × r then A ± B is allowed only if n = p and m = r. Similarly, matrix product A * B is
allowed only if m = p.

Example 2.1. Consider the two matrices ;

A = 

–

1 0 1
2 3 4
1 6 7

 
 
 
  

Using MATLAB, determine the following:

(a) A + B

(b) AB

(c) A2

(d) AT

(e) B–1

(f) BTAT

(g) A2 + B2 – AB

(h) determinant of A, determinant of B and determinant of AB.

Solution.
>> A = [1 0 1; 2 3 4; – 1 6 7]

A =
1     0     1

 2     3     4
– 1     6     7

>> B = [7 4 2 ; 3 5 6 ; – 1 2 1]
B =

7     4     2
3     5     6

– 1     2     1

(a) >> C = A + B
C =

8     4     3
5     8    10

– 2     8     8
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(b) >> D = A * B
D =

6 6     3
19 31    26
4 40    41

(c) >> E = A ^ 2
E =

0     6     8
4    33    42
4    60    72

(d) >> % Let F = transpose of A
>> F = A′

F =
1     2    – 1
0     3     6
1     4     7

(e) >> H = inv (B)
H =

0.1111    0.0000   – 0.2222
0.1429   – 0.1429    0.5714

– 0.1746    0.2857   – 0.3651

(f) >> J = B′ * A′
J =

6    19     4
6    31    40
3    26    41

(g)  >> K = A ^ 2 + B ^ 2 – A * B
K =

53    52    45
15    51    58
– 2    28    42

(h) det (A) = 12
det (B) = – 63
det (A * B) = – 756

Example 2.2. Determine the eigenvalues and eigenvectors of A and B using MATLAB

A = 

4 2 – 3
– 1 1 3

2 5 7

 
 
 
  

B =  
1 2 3
8 7 6
5 3 1

 
 
 
  

.
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Solution.  % Determine the eigenvalues and eigenvectors
A = [4 2 – 3 ; – 1 1 3 ; 2 5 7]
A =

4     2    – 3
– 1     1     3

2     5     7
eig(A)

ans =
0.5949
3.0000
8.4051

lamda = eig(A)
lamda =

0.5949
3.0000
8.4051

[V, D]=eig(A)
V =

– 0.6713    0.9163   – 0.3905
0.6713   – 0.3984    0.3905

– 0.3144    0.0398    0.8337
D =

0.5949 0 0
0 3.0000 0
0 0 8.4051

Example 2.3. Determine the values of x, y, and z for the following set of linear algebraic
equations :

x2 – 3x3 = – 5

2x1 + 3x2 – x3 = 7
4x1 + 5x2 – 2x3 = 10

Solution. Here

A = 

0 1 3
2 3 1
4 5 2

− 
 − 
 − 

   B = 
5
7

10

 
 
 
  

   and X =  
1

2

3

x
x
x

 
 
 
  

AX = B
A–1AX = A–1B

IX = A–1B
or X = A–1B
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>> A = [0 1 – 3 ; 2 3 – 1 ; 4 5 – 2];
>> B = [– 5 ; 7 ; 10]
>> x = inv (A) * B

x =
 – 1.0000
 4.0000
 3.0000

>> check = A * x
check =

 – 5
 7
10

% Alternative method
>> x = A\B

x =
– 1

4
3
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A script is a sequence of ordinary statements and functions used at the command prompt
level. A script is invoked the command prompt level by typing the file-name or by using the pull
down menu. Scripts can also invoke other scripts.

The commands in the Command Window cannot be saved and executed again. Also, the
Command Window is not interactive. To overcome these difficulties, the procedure is first to
create a file with a list of commands, save it, and then run the file. In this way the commands
contained are executed in the order they are listed when the file is run. In addition, as the need
arises, one can change or modify the commands in the file, the file can be saved and run again.
The files that are used in this fashion are known as script files. Thus, a script file is a text file
that contains a sequence of MATLAB commands. Script file can be edited (corrected and/or
changed) and executed many times.

2.15.1  Creating and Saving a Script File

Any text editor can be used to create script files. In MATLAB script files are created and
edited in the Editor/Debugger Window. This window can be opened from the Command Win-
dow. From the Command Window, select File, New, and then M-file. Once the window is open,
the commands of the script file are typed line by line. The commands can also be typed in any
text editor or word processor program and then copied and pasted in the Editor/Debugger Win-
dow. The second type of M-files is the function file. Function file enables the user to extend the
basic library functions by adding ones own computational procedures. Function M-files are
expected to return one or more results. Script files and function files may include reference to
other MATLAB toolbox routines.
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MATLAB function file begins with a header statement of the form:

function (name of result or results) = name (argument list)

Before a script file can be executed it must be saved. All script files must be saved with
the extension “.m”. MATLAB refers to them as m-files. When using MATLAB M-files editor, the
files will automatically be saved with a “.m” extension. If any other text editor is used, the file
must be saved with the “.m” extension, or MATLAB will not be able to find and run the script
file. This is done by choosing Save As… from the File menu, selecting a location, and entering a
name for the file. The names of user defined variables, predefined variables, MATLAB com-
mands or functions should not be used to name script files.

2.15.2  Running a Script File

A script file can be executed either by typing its name in the Command Window and then
pressing the Enter key, directly from the Editor Window by clicking on the Run icon. The file is
assumed to be in the current directory, or in the search path.

2.15.3  Input to a Script File

There are three ways of assigning a value to a variable in a script file.

1. The variable is defined and assigned value in the script file.

2. The variable is defined and assigned value in the Command Window.

3. The variable is defined in the script file, but a specified value is entered in the Com-
mand Window when the script file is executed.

2.15.4  Output Commands

There are two commands that are commonly used to generate output. They are the disp
and fprintf commands.

1. The disp command

The disp command displays the elements of a variable without displaying the name of
the variable, and displays text.

disp(name of a variable) or disp(‘text as string’)

>> A = [1 2 3 ; 4 5 6 ];

>> disp(A)

1  2  3

4  5  6

>> disp(‘Solution to the problem.’)

Solution to the problem.

2. The fprintf command

The fprintf command displays output (text and data) on the screen or saves it to a file.
The output can be formatted using this command.

Example 2.4. Write a function file Veccrossprod to compute the cross product of two
vectors a, and b, where a = (a1, a2, a3), b = (b1, b2, b3), and a × b = (a2b3 – a3b2, a3b1 – a1b3, a1b2
– a2b1). Verify the function by taking the cross products of pairs of unit vectors: (i, j), (j, k), etc.



MATLAB BASICS 51

Solution. Function c = Veccrossprod (a, b) ;

% Veccrossprod : function to compute c = a × b where a and b are 3D vectors

% call syntax:
% c = Veccrossprod(a, b) ;

c = [a(2) * b(3) – a(3) * b(2); a(3) * b(1) – a(1) * b(3); a(1) * b(2) – a(2) * b(1)];
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One most significant feature of MATLAB is its extendibility through user-written pro-
grams such as the M-files. M-files are ordinary ASCII text files written in MATLAB language.
A function file is a subprogram.

2.16.1  Relational and Logical Operators
A relational operator compares two numbers by finding whether a comparison state-

ment is true or false. A logical operator examines true/false statements and produces a result
which is true or false according to the specific operator. Relational and logical operators are
used in mathematical expressions and also in combination with other commands, to make deci-
sion that control the flow a computer program.

MATLAB has six relational operators as shown in Table 2.21.

Table 2.21  Relational operators

Relational operator Interpretation

< Less than
<= Less than or equal
> Greater than
>= Greater than or equal
= = Equal
~ = Not equal

The logical operators in MATLAB are shown in Table 2.22.

Table 2.22 Logical operators

Logical operator Name Description

& AND Operates on two operands (A and B). If both are true,
Example: A & B the result is true (1), otherwise the result is false (0).

| OR Operates on two operands (A and B). If either one, or
Example: A | B both  are true, the result is true (1), otherwise (both are

false) the result is false (0).

~ NOT Operates on one operand (A). Gives the opposite of the
Example: ~ A operand. True (1) if the operand is false, and false (0) if

the operand is true.
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2.16.2  Order of Precedence
The following Table 2.23 shows the order of precedence used by MATLAB.

Table 2.23

Precedence Operation

1 (highest) Parentheses (If nested parentheses exist, inner have precedence).
2 Exponentiation.
3 Logical NOT (~).
4 Multiplication, Division.
5 Addition, Subtraction.
6 Relational operators (>, <, >=, <=, = =, ~=).
7 Logical AND (&).

8 (lowest) Logical OR (|).

2.16.3  Built-in Logical Functions
The MATLAB built-in functions which are equivalent to the logical operators are:

and(A, B) Equivalent to A & B
or(A, B) Equivalent to A | B
not(A) Equivalent to ~ A

List the MATLAB logical built-in functions are described in Table 2.24.
Table 2.24  Additional logical built-in functions

Function Description Example

xor(a, b) Exclusive or. Returns true (1) if one >>xor(8, – 1)
operand is true and the other is false ans =

0
>>xor(8, 0)
ans =

1

all(A) Returns 1 (true) if all elements in a vector >>A = [5 3 11 7 8 15]
A are true (nonzero). Returns 0 (false) if >>all(A)
one or more elements are false (zero). If ans =
A is a matrix, treats columns of A as 1
vectors, returns a vector with 1’s and 0’s. >>B = [3 6 11 4 0 13]

>>all(B)
ans =

0
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Function Description Example

any(A) Returns 1 (true) if any element in a vector A >>A = [5 0 14 0 0 13]
is true (nonzero). Returns 0 (false) if all >>any(A)
elements are false (zero). ans =
If A is a matrix, treats columns of A as vectors, 1
returns a vector with 1’s and 0’s. >>B = [0 0 0 0 0 0 ]

>>any(B)
ans =

0

find(A) If A is a vector, returns the indices of the non- >>A = [0 7 4 2 8 0 0 3 9]
zero elements. >>find(A)

find(A > d) If A is a vector, returns the address of the  ans =
elements that are larger than d (any relational 2 3 4 11 8 9
operator can be used). >>find(A > 4)

ans =
4 5 6

The truth table for the operation of the four logical operators, and, or, Xor, and not are
summarized in Table 2.25.

Table 2.25  Truth table

INPUT OUTPUT

A B
AND OR XOR NOT NOT

A & B A | B (A, B) ~ A ~ B

false false false false false true true

false true false true true true false

true false false true true false true

true true true true false false false

2.16.4  Conditional Statements

A conditional statement is a command that allows MATLAB to make a decision of whether
to execute a group of commands that follow the conditional statement or to skip these com-
mands.

If conditional expression consists of relational and/or logical operators

if a < 30

count = count + 1

disp a

end
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The general form of a simple if statement is as follows:

if logical expression

statements
end

If the logical expression is true, the statements between the if statement and the end
statement are executed. If the logical expression is false, then it goes to the statements follow-
ing the end statement.

2.16.5  Nested if Statements
Following is an example of nested if statements:

if a < 30
count = count + 1;
disp(a);
if b > a

b = 0 ;
end

end

2.16.6  else AND elseif Clauses
The else clause allows to execute one set of statements if a logical expression is true and

a different set if the logical expression is false.
% variable name inc

if inc < 1
x_inc = inc/10;
else
x_inc = 0.05;
end

When several levels of if-else statements are nested, it may be difficult to find which
logical expressions must be true (or false) to execute each set of statements. In such cases, the
elaseif clause is used to clarify the program logic.

2.16.7  MATLAB while Structures

There is a structure in MATLAB that combines the for loop with the features of the if
block. This is called the while loop and has the form:

while logical expression

This set of statements is executed repeatedly as long as the logical expressions remain
true (equals + 1) or if the expression is a matrix rather than a simple scalar variable, as long as
all the elements of the matrix remain nonzero.

end

In addition to the normal termination of a loop by means of the end statement, there are
additional MATLAB commands available to interrupt the calculations. These commands are
listed in Table 2.26 below:
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Table 2.26

Command Description

break Terminates the execution of MATLAB for and while loops. In nested
loops, break will terminate only the innermost loop in which it is placed.

return Primarily used in MATLAB functions, return will cause a normal
return from a function from the point at which the return statement
is executed.

error (‘text’) Terminates execution and displays the message contained in text on
 the screen. Note, the text must be enclosed in single quotes.

The MATLAB functions used are summarized in Table 2.27 below:
Table 2.27

Function Description

Relational A MATLAB logical relation is a comparison between two variables x
operators and y of the same size effected by one of the six operators, <, <=, >, >=,

= =, ~=. The comparison involves corresponding elements of x and y,
and yields a matrix or scalar of the same size with values of “true” or
“false” for each of its elements. In MATLAB, the value of  “false” is zero,
and “true” has a value of one. Any nonzero quantity is interpreted as
“true”.

Combinatorial The operators & (AND) and | (OR) may be used to combine two logical
operators expressions.

all, any If x is a vector, all(x) returns a value of one if all of the elements of x
are nonzero, and a value of zero otherwise. When X is a matrix, all(X)
 returns a row vector of ones or zeros obtained by applying all to each of
the columns of X. The function any operates similarly if any of the
elements of x are nonzero.

find If x is a vector, i = find(x) returns the indices of those elements of x
that are nonzero (i.e., true). Thus, replacing all the negative elements
of x by zero could be accomplished by

i = find(x < 0);
x(i) = zeros(size(i));

If X is a matrix, [i, j] = find(X) operates similarly and returns the row-
column indices of nonzero elements.
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Function Description

if, else, elseif
The several forms of MATLAB if blocks are as follows:
if variable if variable 1 if variable 1
block of statements block of statements block of statements
executed if variable executed if
variable 1 executed if variable 1 is “true”, i.e.,

nonzero is “true”, i.e., nonzero is “true”,
end else elseif variable 2

block of statements block of statements
executed if variable 1 executed if

variable 2 is “false”, i.e., zero is “true”,
end else

block of statements
executed if neither
variable is “true”

end

break Terminates the execution of a for or while loop. Only the innermost
loop in which break is encountered will be terminated.

return Causes the function to return at that point to the calling routine.
MATLAB M-file functions will return normally without this statement.

error (‘text’) Within a loop or function, if the statement error(‘text’) is encountered,
the loop or function is terminated, and the text is displayed.

while The form of the MATLAB while loop is
while variable

block of statements executed as long as the value of
variable is “true” ; i.e., nonzero

end
Useful when a function F itself calls a second “dummy” function “f ”.
For example, the function F might find the root of an arbitrary func-
tion identified as a generic f(x). Then, the name of the actual M-file
function, say fname, is passed as a character string to the function
F either through its argument list or as a global variable, and the
function is evaluated within F by means of feval. The use of
feval(name, x1, x2, ..., xn), where fname is a variable containing
the name of the function as a character string; i.e., enclosed in sin-
gle quotes, and x1, x2, ..., xn are the variables needed in the argu-
ment list of function fname.
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MATLAB has many commands that can be used to create basic 2-D plots, overlay plots,
specialized 2-D plots, 3-D plots, mesh, and surface plots.

2.17.1  Basic 2-D Plots
The basic command for producing a simple 2-D plot is

plot(x values, y values, ‘style option’)
where
x values and y values are vectors containing the x- and y-coordinates of points on the

graph.
style option is an optional argument that specifies the color, line-style, and the point-

marker style.
The style option in the plot command is a character string that consists of 1, 2, or 3

characters that specify the color and/or the line style. The different color, line-style and marker-
style options are summarized in Table 2.28.

Table 2.28  Color, line-style, and marker-style options

Color style-option Line style-option Marker style-option

y yellow   – solid + plus sign
m magenta – – dashed o circle
c cyan : dotted * asterisk
r red  – . dash-dot x x-mark
g green . point
b blue ^ up triangle
w white s square
k black d diamond, etc.

2.17.2  Specialized 2-D Plots
There are several specialized graphics functions available in MATLAB for 2-D plots. The

list of functions commonly used in MATLAB for plotting x-y data are given in Table 2.29.
Table 2.29  List of functions for plotting x-y data

Function Description

area Creates a filled area plot.
bar Creates a bar graph.
barh Creates a horizontal bar graph.
comet Makes an animated 2-D plot.
compass Creates arrow graph for complex numbers.
contour Makes contour plots.
contourf Makes filled contour plots.
errorbar Plots a graph and puts error bars.
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Function Description

feather Makes a feather plot.
fill Draws filled polygons of specified color.
fplot Plots a function of a single variable.
hist Makes histograms.
loglog Creates plot with log scale on both x and y axes.
pareto Makes pareto plots.
pcolor Makes pseudo color plot of matrix.
pie Creates a pie chart.
plotyy Makes a double y-axis plot.
plotmatrix Makes a scatter plot of a matrix.
polar Plots curves in polar coordinates.
quiver Plots vector fields.
rose Makes angled histograms.
scatter Creates a scatter plot.
semilogx Makes semilog plot with log scale on the x-axis.
semilogy Makes semilog plot with log scale on the y-axis.
stairs Plots a stair graph.
stem Plots a stem graph.

2.17.2.1  Overlay plots
There are three ways of generating overlay plots in MATLAB, they are :
(a) Plot  command
(b) Hold command
(c) Line command
(a) Plot command. Example 2.7(a) shows the use of plot command used with matrix

argument, each column of the second argument matrix plotted against the corresponding col-
umn of the first argument matrix.

(b) Hold command. Invoking hold on at any point during a session freezes the current
plot in the graphics window. All the next plots generated by the plot command are added to the
exiting plot. See Example 2.7(a).

(c) Line command. The line command takes a pair of vectors (or a triplet in 3–D)
followed by a parameter name / parameter value pairs as argument. For instance, the com-
mand: line (x data, y data, parameter name, parameter value) adds lines to the existing axes.
See Example 2.7(a).

2.17.3  3-D Plots
MATLAB provides various options for displaying three-dimensional data. They include

line and wire, surface, mesh plots, among many others. More information can be found in the
Help Window under Plotting and Data visualization. Table 2.30 lists commonly used functions.
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Table 2.30  Functions used for 3-D graphics

Command Description

plot3 Plots three-dimensional graph of the trajectory of a set of three para-
metric equations x(t), y(t), and z(t) can be obtained using plot 3(x, y, z).

meshgrid If x and y are two vectors containing a range of points for the evalua-
tion of a function, [X, Y] = meshgrid(x, y) returns two rectangular
matrices containing the x and y values at each point of a two-dimen-
sional grid.

mesh(X, Y, z) If X and Y are rectangular arrays containing the values of the x and y
coordinates at each point of a rectangular grid , and if z is the value of
a function evaluated at each of these points, mesh(X, Y, z) will pro-
duce a three-dimensional perspective graph of the points. The same
results can be obtained with mesh(x, y, z) can also be used.

meshc, meshz If the xy grid is rectangular, these two functions are merely variations
of the basic plotting program mesh, and they operate in an identical
fashion. meshc will produce a corresponding contour plot drawn on
the xy plane below the three-dimensional figure, and meshz will add
a vertical wall to the outside features of the figures drawn by mesh.

surf Produces a three-dimensional perspective drawing. Its use is usually
to draw surfaces, as opposed to plotting functions, although the actual
tasks are quite similar. The output of surf will be a shaded figure. If
row vectors of length n are defined by x = r cos θ and y = r sin θ, with 0

≤ θ ≤ 2π, they correspond to a circle of radius r. If 
�

r  is a column vector
equal to r = [0  1  2]’; then z = r*ones(size(x)) will be a rectangular, 3
× n, arrays of 0’s and 2’s, and surf(x, y, z) will produce a shaded sur-
face bounded by three circles; i.e., a cone.

surfc This function is related to surf in the same way that meshc is related
to mesh.

colormap Used to change the default coloring of a figure. See the MATLAB ref-
erence manual or the help file.

shading Controls the type of color shading used in drawing figures. See the
MATLAB reference manual or the help file.

view view(az, el) controls the perspective view of a three-dimensional plot.
The view of the figure is from angle “el” above the xy plane with the
coordinate axes (and the figure) rotated by an angle “az” in a clock-
wise direction about the z axis. Both angles are in degrees. The default
values are az = 37½º and el = 30º.

axis Determines or changes the scaling of a plot. If the coordinate axis lim-
its of a two-dimensional or three-dimensional graph are contained in
the row vector r = [xmin, xmax, ymin, ymax, zmin, zmax], axis will return the
values in this vector, and axis(r) can be used to alter them. The coordi-
nate axes can be turned on and off with axis(‘on’) and axis(‘off ’). A few
other  string constant inputs to axis and their effects are given below:
axis(‘equal’) x and y scaling are forced to be the same.
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Command Description

axis(‘square’) The box formed by the axes is square.
axis(‘auto’) Restores the scaling to default settings.
axis(‘normal’) Restoring the scaling to full size, removing any effects
of square or equal settings.
axis(‘image’) Alters the aspect ratio and the scaling so the screen
pixels are square shaped rather than rectangular.

contour The use is contour(x, y, z). A default value of N = 10 contour lines will
be drawn. An optional fourth argument can be used to control the
number of contour lines that are drawn. contour(x, y, z, N), if N is a
positive integer, will draw N contour lines, and contour(x, y, z, V), if
V is a vector containing values in the range of z values, will draw
contour lines at each value of z = V.

plot3 Plots lines or curves in three dimensions. If x, y, and z are vectors of
equal length, plot3(x, y, z) will draw, on a three-dimensional coordi-
nate axis system, the lines connecting the points. A fourth argument,
representing the color and symbols to be used at each point, can be
added in exactly the same manner as with plot.

grid grid on adds grid lines to a two-dimensional or three-dimensional
graph; grid off removes them.

slice Draws “slices” of a volume at a particular location within the volume.

Example 2.5. (a) Generate an overlay plot for plotting three lines

y1 = sin t
y2 = t

y3 = t – 
3t

3 !
 + 

5t
5 !

 + 
7t

7 !

0 ≤ t ≤ 2π
Use (i) the plot command

(ii) the hold command
(iii) the line command

(b) Use the functions for plotting x-y data for plotting the following functions.
(i) f(t) = t cost

0 ≤ t ≤ 10π
(ii) x = et

y = 100 + e3t

0 ≤ t ≤ 2π
Solution:
(a) overlay plot
(i) % using the plot command

t = linspace(0, 2 * pi, 100);
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y1 = sin(t); y2 = t;
y3 = t – (t.^ 3)/6 + (t.^ 5)/120 – (t.^ 7)/5040;
plot(t, y1, t, y2, ‘–’, t, y3, ‘o’)
axis([0 5 –1 5])
xlabel(‘t’)
ylabel(‘sin(t) approximation’)
title(‘sin(t) function’)
text(3.5, 0, ‘sin(t)’)
gtext(‘Linear approximation’)
gtext(‘4-term approximation’)
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Fig. E 2.5 (a) (i)

(ii) % using the hold command
x = linspace(0, 2*pi, 100); y1 = sin(x);
plot(x, y1)
hold on
y2 = x; plot(x, y2, ‘–’ )
y3 = x – (x . ^ 3)/6 + (x . ^ 5)/120 – (t . ^ 7)/5040;
plot(x, y3, ‘o’)
axis([0 5 – 1 5])
hold off
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(iii) % using the line command
t = linspace(0, 2*pi, 100);
y1 = sin(t);
y2 = t;
y3 = t – (t.^ 3)/6 + (t.^5)/120 – (t.^7)/5040;
plot(t, y1)
line(t, y2, ‘linestyle’, ‘–’)
line(t, y3, ‘marker’, ‘o’)
axis([0 5 – 1 5])
xlabel(‘t’)
ylabel(‘sin(t) approximation’)
title(‘sin(t) function’)
legend(‘sin(t)’, ‘linear approx’, ‘7th order approx’)
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(b) Using Table 2.29 functions
(i) fplot(‘x.*cos(x)’, [0  10*pi])
This will give the following figure (Fig. E 2.5 (b) (i))
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Fig. E 2.5 (b) (i)

(ii) t = linspace(0, 2*pi, 200);
x = exp(t);
y = 100 + exp(3*t);
loglog(x, y), grid
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 Fig. E 2.5 (b) (ii)

Example 2.6. (a) Plot the parametric space curve of

x(t) = t
y(t) = t2

z(t) = t3 0 ≤ t ≤ 2.0
(b)  z  = – 7 / (1 + x2 + y2) | x |  ≤ 5  ,  | y | ≤ 5
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Solution. (a) >> t = linspace(0, 2,100) ;
>> x = t ; y = t. ^2 ; z = t. ^3;
>> plot3(x, y, z), grid

The plot is shown in Figure E 2.6 (a).
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(b) >> t = linspace(0, 2, 100);
>> x = t ; y = t. ^2 ; z = t. ^3;
>> plot3(x, y, z), grid
>> t = linspace (– 5, 5, 50) ; y = x ;
>> z = – 7./(1 + x . ^ 2 + y . ^ 2);
>> mesh(z)

The plot is shown in Figure E 2.6(b).
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2.17.4  Saving and Printing Graphs
To obtain a hardcopy of a graph, type print in the Command Window after the graph

appears in the Figure Window. The figure can also be saved into a specified file in the PostScripter
or Encapsulated PostScript (EPS) format. The command to save graphics to a file is

print – d devicetype – options filename
where device type for PostScript printers are listed in the following Table 2.31.

Table 2.31  Devicetype for Post Script printers

Devicetype Description Devicetype Description

ps Black and white PostScript eps Black and white EPSF
psc Color PostScript epsc Color EPSF
ps2 Level 2 BW PostScript eps2 Level 2 black and white EPSF
psc2 Level 2 color PostScript epsc2 Level 2 color EPSF

MATLAB can also generate a graphics file in the following popular formats among others.
–dill saves file in Adobe Illustrator format.
–djpeg saves file as a JPEG image.
–dtiff saves file as a compressed TIFF image.
–dmfile saves file as an M-file with graphics handles.

���� � � ��	������	������������

In this section, we present some of the many available commands in MATLAB for read-
ing data from an external file into a MATLAB matrix, or writing the numbers computed in
MATLAB into such an external file.

2.18.1  The fopen Statement
To have the MATLAB read or write a separate data file of numerical values, we need to

connect the file to the executing MATLAB program. The MATLAB functions used are summa-
rized in Table 2.32.

Table 2.32  MATLAB functions used for input/output

Function Description

fopen Connects an existing file to MATLAB or to create a new file from MATLAB.
fid = fopen(‘Filename’, permission code);

where, if fopen is successful, fid will be returned as a positive integer greater
than 2. When unsuccessful, a value of – 1 is returned. Both the file name and the
permission code are string constants enclosed in single quotes. The permission
code can be a variety of flags that specify whether or not the file can be written
to, read from, appended to, or a combination of these. Some common codes are:

Code Meaning

‘r’ read only
‘w’ write only
‘r+’ read and write
‘a+’ read and append

The fopen statement positions the file at the beginning.

(Contd.)
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Function Description

fclose Disconnects a file from the operating MATLAB program. The use is fclose(fid),
where fid is the file identification number  of the file returned by
fopen.fclose(‘all’) will close all files.

fscanf Reads opened files. The use is
A = fscanf(fid, FORMAT, SIZE)

where FORMAT specifies the types of numbers (integers, reals with or without
exponent, character strings) and their arrangement in the data file, and op-
tional SIZE determines how many quantities are to be read and how they are to
be arranged into the matrix A. If SIZE is omitted, the entire file is read. The
FORMAT field is a string (enclosed in single quotes) specifying the form of the
numbers in the file. The type of each number is characterized by a percent sign
(%), followed by a letter (i or d for integers, e or f for floating-point numbers with
or without exponents). Between the percent sign and the type code, one can
insert an integer specifying the maximum width of the field.

fprintf Writes files previously opened.
fprintf(fid, FORMAT, A)

where fid and FORMAT have the same meaning as for fscanf, with the excep-
tion that for output formats the string must end with \n, designating the end of
a line of output.
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In Secs. 2.1 to 2.18, the capability of MATLAB for numerical computations have been
described. In this section some of MATLAB’s capabilities for symbolic manipulations will be
presented. Specifically, the symbolic expressions, symbolic algebra, simplification of mathemati-
cal expressions, operations on symbolic expressions, solution of a single equation or a set of
linear algebraic equations, solutions to differential equations, differentiation and integration of
functions using MATLAB are presented.

2.19.1  Symbolic Expressions
A symbolic expression is stored in MATLAB as a character string. A single quote marks

are used to define the symbolic expression. For instance:
‘sin(y/x)’ ; ‘x ^ 4 + 5*x^3 + 7*x^2 – 7’

The independent variable in many functions is specified as an additional function argu-
ment. If an independent variable is not specified, then MATLAB will pick one. When several
variables exist, MATLAB will pick the one that is a single lower case letter (except i and j),
which is closest to x alphabetically.

The independent variable is returned by the function symvar,
symvar(s) Returns the independent variable for the symbolic expression s.
For example:

Expression s symvar(s)
‘5 * c * d + 34’ d

‘sin(y/x)’ x
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In MATLAB, a number of functions are available to simplify mathematical expressions
by expanding the terms, factoring expressions, collecting coefficients, or simplifying the expres-
sion. For instance:

expand(s) Performs an expansion of s.
A summary of these expressions is given in Table 2.33. A summary of basic operations is

given in Table 2.34. The standard arithmetic operation (Table 2.35) is applied to symbolic ex-
pressions using symbolic functions. These symbolic expressions are summarized in Table 2.36.

Table 2.33

Simplification

collect Collect common terms
expand Expand polynomials and elementary functions
factor Factorization
horner Nested polynomial representation
numden Numerator and denominator
simple Search for shortest form
simplify Simplification
subexpr Rewrite in terms of subexpressions

Table 2.34

Basic Operations

ccode C code representation of a symbolic expression
conj Complex conjugate
findsym Determine symbolic variables
fortran Fortran representation of a symbolic expression
imag Imaginary part of a complex number
latex LaTeX representation of a symbolic expression
pretty Pretty prints a symbolic expression
real Real part of an imaginary number
sym Create symbolic object
syms Shortcut for creating multiple symbolic objects

Table 2.35

Arithmetic Operations

+ Addition
– Subtraction
* Multiplication
.* Array multiplication
/ Right division
./ Array right division
\ Left division
.\ Array left division
^ Matrix or scalar raised to a power
.^ Array raised to a power
‘ Complex conjugate transpose
.‘ Real transpose
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Table 2.36
Symbolic expressions

horner(S) Transposes S into its Horner, or nested, representation.
numden(S) Returns two symbolic expressions that represent, respectively, the

numerator expression and the denominator expression for the
rational representation of S.

numeric(S) Converts s to a numeric form (S must not contain any symbolic
variables).

poly2sym(c) Converts a polynomial coefficient vector c to a symbolic polynomial.
pretty(S) Prints S in an output form that resembles typeset mathematics.
sym2poly(S) Converts S to a polynomial coefficient vector. *
symadd(A, B) Performs a symbolic addition, A + B.
symdiv(A, B) Performs a symbolic division, A / B.
symmul(A, B) Performs a symbolic multiplication, A * B.
sympow(S, p) Performs a symbolic power, S ^ p.
symsub(A, B) Performs a symbolic subtraction, A – B.

2.19.2 Solution to Differential Equations
Symbolic math functions can be used to solve a single equation, a system of equations,

and differential equations. For example:
solve(f) Solves a symbolic equation f for its symbolic variable. If f is a symbolic expres-

sion, this function solves the equation f = 0 for its symbolic variable.
solve(f1, … fn) Solves the system of equations represented by f1, …, fn.
The symbolic function for solving ordinary differential equation is dsolve as shown below:
dsolve(‘equation’, ‘condition’) Symbolically solves the ordinary differential equation

specified by ‘equation’. The optional argument ‘condition’ specifies a boundary or initial condition.
The symbolic equation uses the letter D to denote differentiation with respect to the

independent variable. A D followed by a digit denotes repeated differentiation. Thus, Dy repre-
sents dy/dx, and D2y represents d2y/dx2.  For example, given the ordinary second order differ-
ential equation;

 
2

2
d x
dt

 + 5
dx
dt

 + 3x = 7

with the initial conditions x(0) = 0 and  
�

x (0) = 1.

The MATLAB statement that determine the symbolic solution for the above differential
equation is the following:

x = dsolve(‘D2x = – 5*Dx – 3 * x + 7’, ‘x(0) = 0’, ‘Dx(0) = 1’)
The symbolic functions are summarized in Table 2.37.
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Table 2.37

Solution of Equations

compose Functional composition

dsolve Solution of differential equations

finverse Functional inverse

solve Solution of algebraic equations

2.19.3 Calculus
There are four forms by which the symbolic derivative of a symbolic expression is ob-

tained in MATLAB. They are:
diff(f) Returns the derivative of the expression f  with respect to the default independent

variable.
diff(f, ‘t’) Returns the derivative of the expression f with respect to the variable t.
diff(f, n) Returns the nth derivative of the expression f with respect to the default inde-

pendent variable.
diff(f, ‘t’, n) Returns the nth derivative of the expression f with respect to the variable t.
The various forms that are used in MATLAB to find the integral of a symbolic expression

f are given below and summarized in Table 2.38.
int(f) Returns the integral of the expression f with respect to the default independent

variable.
int(f, ‘t’) Returns the integral of the expression f with respect to the variable t.
int(f, a, b) Returns the integral of the expression f with respect to the default independ-

ent variable evaluated over the interval [a, b], where a and b are numeric expressions.
int(f, ‘t’, a, b) Returns the integral of the expression f with respect to the variable t

evaluated over the interval [a, b], where a and b are numeric expressions.
int(f, ‘m’, ‘n’) Returns the integral of the expression f with respect to the default inde-

pendent variable evaluated over the interval [m, n], where m and n are numeric expressions.
The other symbolic functions for pedagogical and graphical applications, conversions,

integral transforms, and linear algebra are summarized in Tables 2.38 to  2.42.
Table 2.38

Calculus

diff Differentiate

int Integrate

jacobian Jacobian matrix

limit Limit of an expression

symsum Summation of series

taylor Taylor series expansion
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Table 2.39

Pedagogical and Graphical Applications

ezcontour Contour plotter

ezcontourf Filled contour plotter

ezmesh Mesh plotter

ezmeshc Combined mesh and contour plotter

ezplot Function plotter

ezplot Easy-to-use function plotter

ezplot3 Three-dimensional curve plotter

ezpolar Polar coordinate plotter

ezsurf Surface plotter

ezsurfc Combined surface and contour plotter

funtool Function calculator

rsums Riemann sums

taylortool Taylor series calculator

Table 2.40

Conversions

char Convert sym object to string

double Convert symbolic matrix to double

poly2sym Function calculator

sym2poly Symbolic polynomial to coefficient vector

Table 2.41

Integral Transforms

fourier Fourier transform

ifourier Inverse Fourier transform

ilaplace Inverse Laplace transform

iztrans Inverse Z-transform

laplace Laplace transform

ztrans Z-transform
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Table 2.42

Linear Algebra

colspace Basis for column space

det Determinant

diag Create or extract diagonals

eig Eigenvalues and eigenvectors

expm Matrix exponential

inv Matrix inverse

jordan Jordan canonical form

null Basis for null space

poly Characteristic polynomial

rank Matrix rank

rref Reduced row echelon form

svd Singular value decomposition

tril Lower triangle

triu Upper triangle

����� � �����	
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The Laplace transformation method is an operational method that can be used to find
the transforms of time functions, the inverse Laplace transformation using  the partial-fraction
expansion of B(s)/A(s), where A(s) and B(s) are polynomials in s. In this chapter, we present the
computational methods with MATLAB to obtain the partial-fraction expansion of B(s)/A(s) and
the zeros and poles of B(s)/A(s).

MATLAB can be used to obtain the partial-fraction expansion of the ratio of two polyno-
mials, B(s)/A(s) as follows:

( )
( )

B s
A s

 = 
num
den

 = 
1

1

(1) (2) ... ( )
(1) (2) ... ( )

n n

n n

b s b s b n
a s a s a n

−

−
+ + +
+ + +

where a(1) ≠ 0 and num and den are row vectors. The coefficients of the numerator and denomi-
nator of B(s)/A(s) are specified by the num and den vectors.

Hence num = [b(1) b(2) … b(n)]
den = [a(1) a(2) … a(n)]

The MATLAB command
r, p, k = residue(num, den)

is used to determine the residues, poles, and direct terms of a partial-fraction expansion of the
ratio of two polynomials B(s) and A(s) is then given by

 
( )
( )

B s
A s

 = k(s) + 
(1)

(1)
r

s p−
 + 

(2)
(2)

r
s p−

 + … + 
( )

( )
r n

s p n−
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The MATLAB command [num, den] = residue(r, p, k), where r, p, k are the output
from MATLAB converts the partial fraction expansion back to the polynomial ratio B(s)/A(s).

The command printsys (num, den, ‘s’) prints the num/den in terms of the ratio of
polynomials in s.

The command ilaplace will find the inverse Laplace transform of a Laplace function.

2.20.1 Finding Zeros and Poles of B(s)/A(s)

The MATLAB command [z, p, k] = tf2zp(num,den) is used to find the zeros, poles, and
gain K of B(s)/A(s).

If the zeros, poles, and gain K are given, the following MATLAB command can be used to
find the original num/den:

[num,den] = zp2tf (z, p, k)

���� � ���
������������

MATLAB has an extensive set of functions for the analysis and design of control systems.
They involve matrix operations, root determination, model conversions, and plotting of com-
plex functions. These functions are found in MATLAB’s control systems toolbox. The analytical
techniques used by MATLAB for the analysis and design of control systems assume the proc-
esses that are linear and time invariant. MATLAB uses models in the form of transfer-functions
or state-space equations.

2.21.1 Transfer Functions

The transfer function of a linear time invariant system is expressed as a ratio of two
polynomials. The transfer function for a single input and a single output (SISO) system is
written as

H(s) = 
1

0 1 1
1

0 1 1

...

...

n n
n n

m m
m m

b s b s b s b
a s a s a s a

−
−

−
−

+ + + +
+ + + +

when the numerator and denominator of a transfer function are factored into the zero-pole-gain
form, it is given by

H(s) = 1 2

1 2

( )( )...( )
( )( )...( )

n

m

s z s z s z
s p s p s p

− − −
− − −

The state-space model representation of a linear control system s written as

x�  = Ax + Bu

 y = Cx + Du

2.21.2 Model Conversion
There are a number of functions in MATLAB that can be used to convert from one model

to another. These conversion functions and their applications are summarized in Table 2.43.
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Table 2.43
Model conversion functions

Function Purpose

c3d Continuous state-space to discrete state-space
residue Partial-fraction expansion
ss3tf State-space to transfer function
ss2zp State-space to zero-pole-gain
tf2ss Transfer function to state-space
tf2zp Transfer function to zero-pole-gain
zp2ss Zero-pole-gain to state-space
zp2tf Zero-pole-gain to transfer function

Residue Function: The residue function converts the polynomial transfer function

H(s) = 
1

0 1 1
1

0 1 1

...

...

n n
n n

m m
m m

b s b s b s b

a s a s a s a

−
−

−
−

+ + + +
+ + + +

to the partial fraction transfer function

H(s) = 1

1

r
s p−

 + 2

2

r
s p−

 + … + n

n

r
s p−

 + k(s)

[r, p, k] = residue(B, A) Determine the vectors r, p, and k, which contain the residue
values, the poles, and the direct terms from the partial-fraction expansion. The inputs are the
polynomial coefficients B and A from the numerator and denominator of the transfer function,
respectively.

ss2tf Function:  The ss2tf function converts the continuous-time, state-space equa-
tions

x′ = Ax + Bu

 y = Cx + Du
to the polynomial transfer function

H(s) = 
1

0 1 1
1

0 1 1

...

...

n n
n n

m m
m m

b s b s b s b

a s a s a s a

−
−

−
−

+ + + +
+ + + +

The function has two output matrices:

[num, den] = ss2tf(A, B, C, D, iu) Computes vectors num and den containing the
coefficients, in descending powers of s, of the numerator and denominator of the polynomial
transfer function for the iuth input. The input arguments A, B, C, and D are the matrices of
the state-space equations corresponding to the iuth input, where iu is the number of the input
for a multi-input system. In the case of a single-input system, iu is 1.

ss2zp Function: The ss2zp function converts the continuous-time, state-space equations
x′ = Ax + Bu
y = Cx + Du
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to the zero-pole-gain transfer function

H(s) = k 1 2

1 2

( )( )...( )
( )( )...( )

n

m

s z s z s z
s p s p s p

− − −
− − −

The function has three output matrices:
[z, p, k] = ss2zp(A, B, C, D, iu) Determines the zeros (z) and poles (p) of the zero-pole-

gain transfer function for the iuth input, along with the associated gain (k). The input matrices
A, B, C, and D of the state-space equations correspond to the iuth input, where iu is the number
of the input for a multi-input system. In the case of a single-input system iu is 1.

tf2ss Function: The tf 2ss function converts the polynomial transfer function

H(s) = 
1

0 1 1
1

0 1 1

...

...

n n
n n

m m
m m

b s b s b s b

a s a s a s a

−
−

−
−

+ + + +
+ + + +

to the controller-canonical form state-space equations
   x′ = Ax + Bu
    y = Cx + Du

The function has four output matrices:
[A,B,C,D] = tf2ss(num,den) Determines the matrices A, B, C, and D of the controller-

canonical form state-space equations. The input arguments num and den contain the coeffi-
cients, in descending powers of s, of the numerator and denominator polynomials of the trans-
fer function that is to be converted.

tf2zp Function: The tf2zp function converts the polynomial transfer function

H(s) = 
1

0 1 1
1

0 1 1

...

...

n n
n n

m m
m m

b s b s b s b
a s a s a s a

−
−

−
−

+ + + +
+ + + +

to the zero-pole-gain transfer function

H(s) = k 1 2

1 2

( )( )...( )
( )( )...( )

n

m

s z s z s z
s p s p s p

− − −
− − −

The function has three output matrices:
[z, p, k] = tf2zp(num,den) Determines the zeros (z), poles (p) and associated gain (k) of

the zero-pole-gain transfer function using the coefficients, in descending powers of s, of the
numerator and denominator of the polynomial transfer function that is to be converted.

zp2tf Function: The zp2tf function converts the zero-pole-gain transfer function

H(s) = k 1 2

1 2

( )( )...( )
( )( )...( )

n

m

s z s z s z
s p s p s p

− − −
− − −

to the polynomial transfer function

H(s) = 
1

0 1 1
1

0 1 1

...

...

n n
n n

m m
m m

b s b s b s b
a s a s a s a

−
−

−
−

+ + + +
+ + + +

The function has two output matrices:
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[num, den] = zp2tf(z, p, k) Determines the vectors num and den containing the coeffi-
cients, in descending powers of s, of the numerator and denominator of the polynomial transfer
function. p is a column vector of the pole locations of the zero-pole-gain transfer function, z is a
matrix of the corresponding zero locations, having one column for each output of a multi-output
system, k is the gain of the zero-pole-gain transfer function. In the case of a single-output
system, z is a column vector of the zero locations corresponding to the pole locations of vector p.

zp2ss Function: The zp2ss function converts the zero-pole-gain transfer function

H(s) = 1 2

1 2

( )( )...( )
( )( )...( )

n

m

s z s z s z
s p s p s p

− − −
− − −

to the controller-canonical form state-space equations
x′ = Ax + Bu

 y = Cx + Du
The function has four output matrices:
[A, B, C, D] = zp2ss(z, p, k) Determines the matrices A, B, C, and D of the control-

canonical form state-space equations. p is a column vector of the pole locations of the zero-pole-
gain transfer function, z is a matrix of the corresponding zero locations, having one column for
each output of a multi-output system, k is the gain of the zero-pole-gain transfer function. In
the case of a single-output system, z is a column vector of the zero locations corresponding to
the pole locations of vector p.
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MATLAB can be used to obtain the partial-fraction expansion of the ratio of two polyno-
mials, B(s)/A(s) as follows:

( )
( )

B s
A s

 = 
num
den

 = 
1

1

(1) (2) ... ( )

(1) (2) ... ( )
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where a(1) ≠ 0 and num and den are row vectors. The coefficients of the numerator and denomi-
nator of B(s)/A(s) are specified by the num and den vectors.

Hence num = [b(1) b(2) … b(n)]
 den = [a(1) a(2) … a(n)]

The MATLAB command
r, p, k = residue(num, den)

is used to determine the residues, poles, and direct terms of a partial-fraction expansion of the
ratio of two polynomials B(s) and A(s) is then given by

( )
( )

B s
A s

 = k(s) + 
(1)

(1)
r

s p−
 + 

(2)
(2)

r
s p−

 + … + 
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The MATLAB command [num, den] = residue(r, p, k) where r, p, k are the output from
MATLAB converts the partial fraction expansion back to the polynomial ratio B(s)/A(s).

The command printsys (num,den, ‘s’) prints the num/den in terms of the ratio of poly-
nomials in s.

The command ilaplace will find the inverse Laplace transform of a Laplace function.
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Finding Zeros and Poles of B(s)/A(s)
The MATLAB command [z, p, k] = tf2zp(num,den) is used to find the zeros, poles, and

gain K of B(s)/A(s).
If the zeros, poles, and gain K are given, the following MATLAB command can be used to

find the original num/den:
[num, den] = zp2tf (z, p, k)

Example 2.7. Consider the function

H(s) = 
( )
( )

n s
d s

where n(s) = s4 + 6s3 + 5s2 + 4s + 3

d(s) = s5 + 7s4 + 6s3 + 5s2 + 4s + 7
(a) Find n(– 10), n(– 5), n(– 3) and n(– 1)

(b) Find d(– 10), d(– 5), d(– 3) and d(– 1)
(c) Find H(– 10), H(– 5), H(– 3) and H(– 1)

Solution:
(a) >> n = [1 6 5 4 3];           % n = s ^ 4 + 6s ^ 3 + 5s ^ 2 + 4s + 3

>> d = [1 7 6 5 4 7];        % d = s ^ 5 + 7s ^ 4 + 6s ^ 3 + 5s ^ 2 + 4s + 7
>> n2 = polyval(n, [– 10])

n2 = 4463
>> nn10 = polyval(n, [– 10])

nn10 = 4463
>> nn5 = polyval(n, [– 5])

nn5 = – 17
>> nn3 = polyval(n, [– 3])

nn3 = – 45
>> nn1 = polyval(n, [– 1])

nn1 = – 1
(b) >> dn10 = polyval(d, [– 10])

dn10 = – 35533
>> dn5 = polyval(d, [– 5])

dn5 = 612
>> dn3 = polyval(d, [– 3])

dn3 = 202
>> dn1=polyval(d, [– 1])

dn1 = 8
(c) >> Hn10 = nn10/dn10

 Hn10 = – 0.1256
>> Hn5 = nn5/dn5

Hn5 = – 0.0278
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>> Hn3 = nn3/dn3
Hn3 = – 0.2228

>> Hn1 = nn1/dn1
Hn1 = – 0.1250

Example 2.8. Generate a plot of

y(x) = e–0.7x sin ωx
where w = 15 rad/s, and 0 ≤ x ≤ 15. Use the colon notation to generate the x vector in increments
of 0.1.

Solution.
>> x = [0 : 0.1 : 15];
>> w = 15;
>> y = exp(– 0.7*x).*sin(w*x);
>> plot(x, y)
>> title(‘y(x) = e^-^0^.^7^x sin\omega x’)
>> xlabel(‘x’)
>> ylabel(‘y’)
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 Fig. E 2.8.

Example 2.9. Generate a plot of
y(x) = e–0.6x cos ωx

where ω = 10 rad/s, and 0 ≤ x ≤ 15. Use the colon notation to generate the x vector in increments
of 0.05.

Solution.
 >> x = [0 : 0.1 : 15];
>> w = 10;
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>> y = exp(– 0.6*x).*cos(w*x);
>> plot(x, y)
>> title(‘y(x) = e^-^0^.^6^x cos\omega x’)
>> xlabel(‘x’)
>> ylabel(‘y’)
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Fig. E 2.9.

Example 2.10. Using the functions for plotting x-y data given in Table 2.29 plot the
following functions.

(a) r2 = 5 cos 3t     0 ≤ t ≤ 2π
(b) r2 = 5 cos 3t     0 ≤ t ≤ 2π
 x = r cos t, y = r sin t
(c) y1 = e–2x cos x   0 ≤ t ≤ 20

y2 = e2x

(d) y = 
( )cos x

x
 – 5 ≤ x ≤ 5π

(e) f = e–3t/5 cos t    0 ≤ t ≤ 2π

(f) z = – 
1
3

x2 + 2xy + y2

|x| ≤ 7, |y| ≤ 7
Solution.
(a) t = linspace(0, 2*pi, 200);

r = sqrt(abs(5*cos(3*t)));
polar(t, r)
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(b) t = linspace(0, 2*pi, 200);
r = sqrt(abs(5*cos(3*t)));
x = r.*cos(t);
y = r.*sin(t);
fill(x, y, ‘k’),
axis(‘square’)
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Fig. E 2.10(b)

(c)     x = 1 : 0.1 : 20;
   y1 = exp(– 2*x).*cos(x);
   y2 = exp(2*x);
  Ax = plotyy(x, y1, x, y2);
hy1 = get(Ax(1), ‘ylabel’);
hy2 = get(Ax(2), ‘ylabel’);
set(hy1, ‘string’, ‘exp(– 2x).cos(x)’)
set(hy2, ‘string’, ‘exp(– 2x)’);
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(d) x = linspace(– 5*pi,5*pi,100);
y = cos(x)./x;
area(x, y);
xlabel(‘x (rad)’), ylabel(‘cos(x)/x’)
hold on
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 Fig. E 2.10(d)

(e) t = linspace(0, 2*pi, 200);
f = exp(– 0.6*t).*sin(t);
stem(t, f)
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(f) r = – 7 : 0.2 : 7;
[X, Y] = meshgrid(r, r);

 Z = – 0.333*X.^2 + 2*X.*Y + Y.^2;
cs = contour(X, Y, Z);
label(cs)
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Example 2.11. Use the functions listed in Table 2.30 for plotting 3-D data for the follow-
ing.

(a) z = cos x cos y 
–

2 2x +y
5e

|x| ≤ = 7, | y | ≤ 7
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(b) Discrete data plots with stems

x = t, y = t cos(t)
z = et/5 – 2           0 ≤ t ≤ 5π

(c) A cylinder generated by
r = sin(5πz) + 3

0 ≤ z ≤ 1    0 ≤ θ ≤ 2π
Solution.
(a) u = – 7 : 0.2 : 7;

   [X, Y] = meshgrid(u, u);
Z = cos (X).*cos (Y).*exp(– sqrt(X.^2 + Y.^2)/5);

surf(X, Y, Z)
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(b) t = linspace(0, 5*pi, 200);
x = t ; y = t.*cos(t);
z = exp(t/5) – 2;
stem3(x, y, z, ‘filled’);
xlabel(‘t’), ylabel (‘t cos(t)’), zlabel (‘e^t/5 – 1’)
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(c) z =[0 : 0.2 : 1]’;
r = sin(5*pi*z)+3;
cylinder(r)
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Example 2.12. Obtain the plot of the points for 0 ≤ t ≤ 6π when the coordinates x,y,z are
given as a function of the parameter t as follows:
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Solution.
% Line plots
>> t = [0:0.1:6*pi];
>> x = sqrt(t).*sin(3*t);
>> y = sqrt(t).*cos(3*t);
>> z = 0.8*t;
>> plot3(x, y, z, ‘k’, ‘linewidth’, 1)
>> grid on
>> xlabel (‘x’); ylabel (‘y’) ; zlabel (‘z’)
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z
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Fig. E 2.12.

Example 2.13.  Obtain the mesh and surface plots for the function z = 
2

2 2
2xy

x + y
 over the

domain – 2 ≤ x ≤ 6 and 2 ≤ y ≤ 8.
Solution.

% Mesh and surface plots
      x = – 2 : 0.1 : 6;
>> y = 2 : 0.1 : 8;
>> [x, y] = meshgrid(x, y);
>> z = 2*x.*y.^2./(x.^2 + y.^2);
>> mesh(x, y, z)
>> xlabel(‘x’); ylabel(‘y’); zlabel(‘z’)
>> surf(x, y, z)
>> xlabel(‘x’); ylabel(‘y’); zlabel(‘z’)
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Fig. E 2.13(b)

Example 2.14. Plot the function z = – . 2 21 5 x + y2  sin(x) cos (0.5y) over the domain – 4 ≤ x
≤ 4 and – 4 ≤ y ≤ 4 using Table 2.30

(a) Mesh plot
(b) Surface plot

(c) Mesh curtain plot
(d) Mesh and contour plot

(e) Surface and contour plot
Solution.
(a) % Mesh Plot

>> x = – 4 : 0.25 : 4;
>> y = – 4 : 0.25 : 4;
>> [x, y] = meshgrid(x, y);
>> z = 2.^(– 1.5*sqrt(x.^2 + y.^2)).*cos(0.5*y).*sin(x);
>> mesh(x, y, z)
>> xlabel(‘x’); y label(‘y’)
>> zlabel(‘z’)
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 Fig. E 2.14(a)

(b) % Surface Plot

>> x = – 4 : 0.25 : 4;
>> y = – 4 : 0.25 : 4;
>> [x, y] = meshgrid(x, y);
>> z = 2.0.^(– 1.5*sqrt(x.^2 + y.^2)).*cos(0.5*y).*sin(x);
>> surf(x, y, z)
>> xlabel(‘x’); y label (‘y’)
>> zlabel(‘z’)
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 Fig. E 2.14(b)

(c) % Mesh Curtain Plot
>> x = – 4.0 : 0.25 : 4;
>> y = – 4.0 : 0.25 : 4;
>> [x, y] = meshgrid(x, y);
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>> z = 2.0.^(– 1.5*sqrt(x.^2 + y.^2)).*cos(0.5*y).*sin(x);
>> mesh z(x, y, z)
>> xlabel(‘x’); ylabel(‘y’)
>> zlabel(‘z’)

(d) % Mesh and Contour Plot
>> x = – 4.0 : 0.25 : 4;
>> y = – 4.0 : 0.25 : 4;
>> [x, y] = meshgrid (x, y);
>> z = 2.0.^(– 1.5*sqrt(x.^2 + y.^2)).*cos(0.5*y).*sin(x);
>> meshc(x, y, z)
>> xlabel(‘x’); ylabel(‘y’)
>> zlabel(‘z’)
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 Fig. E 2.14(c)
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(e) % Surface and Contour Plot

>> x = – 4.0 : 0.25 : 4;
>> y = – 4.0 : 0.25 : 4;
>> [x, y] = meshgrid(x, y);
>> z = 2.0. ^ (– 1.5*sqrt (x. ^2 + y. ^2)).*cos (0.5*y).*sin(x);
>> surfc(x, y, z)
>> xlabel(‘x’); ylabel(‘y’)
>> zlabel(‘z’)
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Fig. E 2.14(e)

Example 2.15. Plot the function − 2 21.5 x +y
z = 2 sin(x) cos (0.5y)  over the domain – 4 ≤ x

≤ 4 and – 4 ≤ y ≤ 4 using Table 2.30.
(a) Surface plot with lighting

(b) Waterfall plot
(c) 3-D contour plot

(d) 2-D contour plot
Solution.
(a) % Surface Plot with lighting

>> x = – 4.0 : 0.25 : 4;
 >> y = – 4.0 : 0.25 : 4;
 >> [x, y] = meshgrid(x, y);
 >> z = 2.0.^(– 1.5*sqrt(x.^2 + y.^2)).*cos(0.5*y).*sin(x);
 >> surfl(x, y, z)
 >> xlabel(‘x’); ylabel(‘y’)
 >> zlabel(‘z’)
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(b) % Waterfall Plot

>> x = – 4.0 : 0.25 : 4;
>> y = – 4.0 : 0.25 : 4;
>> [x, y] = meshgrid(x, y);
>> z = 2.0.^(– 1.5*sqrt(x.^2 + y.^2)).*cos(0.5*y).*sin(x);
>> waterfall(x, y, z)
>> xlabel(‘x’); ylabel(‘y’)
>> zlabel(‘z’)
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 Fig. E 2.15(b)

(c) % 3-D Contour Plot

>> x = – 4.0 : 0.25 : 4;
>> y = – 4.0 : 0.25 : 4;
>> [x, y] = meshgrid(x, y);
>> z = 2.0.^(– 1.5*sqrt(x.^2 + y.^2)).*cos(0.5*y).*sin(x);
>> contour3(x, y, z, 15)
>> xlabel(‘x’) ; ylabel(‘y’)
>> zlabel(‘z’)
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 Fig. E 2.15(c)

(d) % 2-D Contour Plot

>> x = – 4.0 : 0.25 : 4;
>> y = – 4.0 : 0.25 : 4;
>> [x, y] = meshgrid(x, y);
>> z = 2.0.^(– 1.5*sqrt(x.^2 + y.^2)).*cos(0.5*y).*sin(x);
>> contour(x, y, z, 15)
>> xlabel(‘x’); ylabel(‘y’)
>> zlabel(‘z’)
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Fig. E 2.15(d)

Example 2.16. Using the functions given in Table 2.29 for plotting x-y data, plot the
following functions:

(a) f(t) = t cos t 0 ≤ t ≤ 10π
(b) x = e–2t, y = t 0 ≤ t ≤ 2π
(c) x = t, y = e2t 0 ≤ t ≤ 2π
(d) x = et, y = 50 + et 0 ≤ t ≤ 2π
(e) r2 = 3 sin 7t

y = r sin t 0 ≤ t ≤ 2π
(f)  r2 = 3 sin 4t

y = r sin t 0 ≤ t ≤ 2π
(g) y = t sin t 0 ≤ t ≤ 5π
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Solution.
(a) % Use of plot command

>> fplot(‘x.*cos(x)’, [0, 10*pi])
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Fig. E 2.16(a)

(b) % Semilog x command

>> t = linspace(0, 2 * pi, 200);
>> x = exp(– 2 * t); y = t;
>> semilog x (x, y),grid
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Fig. E 2.16(b)

(c) % Semilog y command
 t = linspace(0, 2 * pi, 200);
>> semilogy(t, exp(– 2 * t)), grid
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(d) % Use of loglog command

>> t = linspace(0, 2 * pi, 200);
>> x = exp(t);
>> y = 50 + exp(t);
>> loglog(x, y), grid
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Fig. E 2.16(d)

(e) %Use of stairs command
>> t = linspace(0, 2*pi, 200);
>> r = sqrt(abs(3*sin(7*t)));
>> y = r.*sin(t);
>> stairs(t, y)
>> axis([0 pi 0 inf]);
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Fig. E 2.16(e)

(f) % Use of bar command
>> t = linspace(0, 2*pi,200);
>> r = sqrt(abs(3*sin(4*t)));
>> y = r.*sin(t);
>> bar(t, y)
>> axis([0 pi 0 inf]);
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Fig. E 2.16(f)

(g) %use of comet command
>> q = linspace(0, 5*pi, 200);
>> y = q.*sin(q);
>> comet(q, y)
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 Fig. E 2.16(g)

Example 2.17. Consider the two matrices

A = 
 
 
  

3 2

5j 10 + 2 j

π

B =  
 
 
 

7j – 15j

2 18π

Using MATLAB , determine the following:
(a) A + B

(b) AB
(c) A2

(d) AT

(e) B–1

(f) BTAT

(g) A2 + B2 – AB
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Solution:
>> A = [3 2*pi ; 5j 10 + sqrt(2)*j];
>> B = [7j –15j ; 2*pi 18];

(a) A + B
ans =

 3.0000 + 7.0000i   6.2832 – 15.0000i
6.2832 + 5.0000i  28.0000 + 1.4142i

(b) >> A * B
ans =

1.0e + 002 *
0.3948 + 0.2100i   1.1310 – 0.4500i

0.2783 + 0.0889i   2.5500 + 0.2546i
(c) >> A ^ 2

ans =
9.0000 + 31.4159i  81.6814 + 8.8858i

– 7.0711 + 65.0000i  98.0000 +59.7002i
(d) >> inv(A)

ans =
 0.1597 + 0.1917i  – 0.1150 – 0.1042i

 0.0829 – 0.0916i   0.0549 + 0.0498i
(e) >> B ^ – 1

ans =
0 – 0.0817i   0.0681
0 + 0.0285i   0.0318

(f) >> inv(B) * inv(A)
ans =

 0.0213 – 0.0193i  – 0.0048 + 0.0128i

– 0.0028 + 0.0016i   0.0047 – 0.0017i
(g) >> (A ^ 2 + B ^ 2) – (A * B)

ans =
1.0e + 002 *
– 0.7948 – 0.8383i   0.7358 – 2.1611i
0.7819 + 1.0010i   1.6700 – 0.6000i

Example 2.18. Find the inverse of the following matrices using MATLAB:

(a) 
 
 
 
  

3 2 0
2 – 1 7
5 4 9

(b) 

 
 
 
  

– 4 2 5
7 – 1 6
2 3 7

(c)  
 
 
 
  

– 1 2 – 5
4 3 7
7 – 6 1
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Solution.
>> clear % Clears the workspace
>> A = [3 2 0; 2 –1 7; 5 4 9]; % Spaces separate matrix columns – semicolons separate

matrix rows
>> B = [– 4 2 5; 7 – 1 6; 2 3 7]; % Spaces separate matrix columns – semicolons separate

matrix rows
>> C = [– 1 2 – 5; 4 3 7; 7 – 6 1]; % Spaces separate matrix columns – semicolons separate

matrix rows
>> inv(A); % Finds the inverse of the selected matrix
>> inv(B); % Finds the inverse of the selected matrix
>> inv(C) % Finds the inverse of the selected matrix
% Inverse of A
ans =
      0.4805        0.2338   – 0.1818
   – 0.2208     – 0.3506      0.2727
   – 0.1688        0.0260      0.0909
% Inverse of B
ans =
   – 0.1773      0.0071      0.1206
   – 0.2624   – 0.2695      0.4184
      0.1631      0.1135   – 0.0709
% Inverse of  C
ans =
      0.1667    0.1037      0.1074
      0.1667    0.1259   – 0.0481
   – 0.1667    0.0296   – 0.0407
Example 2.19. Determine the eigenvalues and eigenvectors of  matrix A using MATLAB

(a) A = 

–

–

 
 
 
  

4 1 5

2 1 3

6 7 9

(b) A = 
 
 
 
  

3 5 7

2 4 8

5 6 10

Solution.
(a) A = [4 – 1 5 ; 2 1 3 ; 6 – 7 9]
     A =

    4    – 1     5
    2     1     3
    6    – 7     9

%The eigenvalues of A
format short e
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eig(A)
ans =

  1.0000e + 001
  5.8579e – 001
  3.4142e + 000

%The eigenvectors of A
[Q, d] = eig(A)

Q =
 – 5.5709e – 001 – 8.2886e – 001 – 7.3925e – 001
 – 3.7139e – 001 – 3.9659e – 002 – 6.7174e – 001
 – 7.4278e – 001    5.5805e – 001 – 4.7739e – 002

d =
 1.0000e + 001           0            0
            0  5.8579e – 001            0

0 0  3.4142e + 000
(b) A =

     3     5      7
     2     4      8
     5     6    10

%The eigenvalues of A
format short e
eig(A)
ans =

 1.7686e + 001
 – 3.4295e – 001 + 1.0066e + 000i

 – 3.4295e – 001 – 1.0066e + 000i
%The eigenvectors of A
[Q, d] = eig(A)
      Q =
  Column 1

 5.0537e – 001
4.8932e – 001
7.1075e – 001

  Column 2
 – 2.0715e – 001 – 5.2772e – 001i
    7.1769e – 001
 – 3.3783e – 001 + 2.2223e – 001i



MATLAB BASICS 97

  Column 3
 – 2.0715e – 001 + 5.2772e – 001i
    7.1769e – 001
 – 3.3783e – 001 – 2.2223e - 001i
d =
  Column 1
  1.7686e + 001
            0
            0
  Column 2
            0
 – 3.4295e – 001 + 1.0066e + 000i
            0
  Column 3
            0
            0
 – 3.4295e – 001 – 1.0066e + 000i

Example 2.20. Determine the eigenvalues and eigenvectors of  A and  B  using MATLAB.

A = 
–

–

 
 
 
 
 
  

3 0 2 1

1 2 5 4

7 1 2 6

1 2 3 4

B = 
– –

 
 
 
 
 
  

1 3 5 7

2 1 2 4

3 2 1 1

4 1 0 6

Solution.
% MATLAB  Program

% The matrix “a” = A * B
>> A = [ 3 0 2 1; 1 2 5 4; 7 – 1 2 6; 1 – 2 3 4 ];
>> B = [ 1 3 5 7; 2 – 1 – 2 4; 3 2 1 1; 4 1 0 6 ];
>> a = A * B
a =
    13    14    17    29
    36    15     6     44
    35    32    39    83
    22    15    12    26
>> eig (a)
Ans. =
    98.5461
      2.2964
   – 1.3095
   – 6.5329
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The eigenvectors are:
>> [Q, d] = eig (a)
Q =
   – 0.3263   – 0.2845      0.3908      0.3413
   – 0.3619      0.7387   – 0.7816   – 0.9215
   – 0.8168   – 0.6026      0.4769      0.0962
   – 0.3089      0.1016   – 0.0950      0.1586
d =
   98.5461 0  0 0
         0  2.2964   0 0
         0 0 – 1.3095 0
         0 0 0 – 6.5329
Example 2.21. Solve the following set of equations using MATLAB.

(a)     x1 + 2x2 + 3x3 + 5x4 = 21
– 2x1 + 5x2 + 7x3 – 9x4 = 18

   5x1 + 7x2 + 2x3 – 5x4 = 25
  – x1 + 3x2 – 7x3 + 7x4 = 30

(b)     x1 + 2x2 + 3x3 + 4x4 = 8
       2x1 – 2x2 – x3 – x4 = – 3

 x1 – 3x2 + 4x3 – 4x4 = 8
2x1 + 2x2 – 3x3 + 4x4 = – 2

Solution. (a)
>> A = [1 2 3 5 ; – 2 5 7 – 9 ; 5 7 2 – 5 ; – 1 – 3 – 7 7];
>> B = [21 ; 18 ; 25 ; 30] ;
>> S = A\B

S =
   – 8.9896
    14.1285
   – 5.4438
      3.6128
% Therefore x1 = – 8.9896, x2 = 14.12.85, x3 = – 5.4438, x4 = 3.6128.
(b)

>> A = [1 2 3 4 ; 2 – 2 – 1 1 ; 1 – 3 4 – 4 ; 2 2 – 3 4];
>> B = [8 ; – 3 ; 8 ; – 2];
>> S = A\B

S =
      2.0000
      2.0000
      2.0000
   – 1.0000
% Therefore x1 = 2.0000, x2 = 2.0000, x3 = 2.0000, x4 = – 1.0000.
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Example 2.22. Use diff command for symbolic differentiation of the following functions:

(a) S1 = ex8

(b) S2 = 3x3 ex5

(c) S3 = 5x3 – 7x2 + 3x + 6

Solution.
(a)

>> syms x
>> S1 = exp(x ^ 8);
>> diff (S1)

 ans =
 8*x^7*exp(x^8)
 (b)

>> S2 = 3* x ^3*exp(x^5);
>> diff (S2)

 ans =
 9*x^2*exp(x^5) +15*x^7*exp(x^5)
(c)

>> S3 = 5*x^3 – 7*x^2 + 3*x + 6;
>> diff (S3)

 ans =
 15*x^2 – 14*x + 3
Example 2.23. Use MATLAB’s symbolic commands to find the values of the following

integrals.

(a) 
0.7

0.2
|x|dx∫

(b) 2(cos 7 )
0.2

y y dy
π

+∫
(c) x

(d) 7x5 – 6x4 + 11x3 + 4x2 + 8x + 9
(e) cos a

Solution.
(a)

>>syms x, y, a, b
>> S1 = abs(x)
>> int (S1, 0.2, 0.7)

 ans =
 9/40
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 (b)
>> S2 = cos (y) + 7*y^2
 >> int (S2, 0, pi)

 ans =
 7/3*pi^3
 (c)

>> S3 = sqrt (x)
>> int (S3)

 ans =
 2/3*x^ (3/2)

>> int (S3, ‘a’, ‘b’)
 ans =
 2/3*b^ (3/2) – 2/3*a^ (3/2)
  >> int (S3, 0.4, 0.7)
 ans =
 7/150*70^ (1/2) – 4/75*10^ (1/2)
 (d)

>> S4 = 7*x^5 – 6*x^4 + 11*x^3 + 4*x^2 + 8 * x – 9
>> int (S4)

 ans =
 7/6*x^6 – 6/5*x^5 + 11/4*x^4 + 4/3*x^3 + 4*x^2 – 9*x

  (e)
>> S5 = cos (a)
>> int (S5)

 ans =
 sin (a)
Example 2.24. Obtain the general solution of the following first order differential equa-

tions:

(a) 
dy
dt

 = 5t – 6y (b)
2

2

d y
dt

 + 3
dy
dt

 + y = 0

(c) 
ds
dt

 = Ax3 (d)
ds
dA

 = Ax3

Solution.
(a)

>> solve (‘Dy = 5*t – 6*y’)
 ans =
 5/6*t – 5/36 + exp (– 6*t)*C1
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 (b)
>> dsolve (‘D2y + 3*Dy + y = 0’)

 ans =
 C1*exp (1/2*(5^ (1/2) – 3)*t) + C2*exp (– 1/2*(5^ (1/2) +3)*t)
 (c)

>> dsolve (‘Ds = A*x^3’, ‘x’)
 ans =
 1/4*A*x^4 + C1
 (d)

>> dsolve (‘Ds = A*x^3’, ‘A’)
ans =
1/2*A^2*x^3 + C1
Example 2.25. Determine the solution of the following differential equations that satis-

fies the given initial conditions.

(a) 
dy
dx

 = – 7x2 y(1) = 0.7

(b) 
dy
dx

 = 5x cos2 y y(0) = π/4

(c) 
dy
dx

 = – y + e3x y(0) = 2

(d) 
dy
dt

 + 5y = 35 y(0) = 4

Solution.
(a)

>> dsolve (‘Dy = – 7*x^2’, ‘y (1) = 0.7’)
 ans =
 – 7*x^2*t + 7* x ^2 + 7/10
(b)

>> dsolve (‘Dy = 5*x*cos (y) ^2’, ‘y (0) = pi/4’)
 ans =
 atan (5*t*x + 1)
 (c)

>> dsolve (‘Dy = – y + exp (3*x)’, ‘y (0) = 2’)
 ans =
 exp (3*x) + exp (– t)*(– exp (3*x) +2)
(d)

>> dsolve (‘Dy + 5*y = 35’, ‘y (0) = 4’)
 ans =
 7 – 3*exp (– 5*t)
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Example 2.26. Given the differential equation

2

2
d x
dt

 + 7
dx
dt  + 5x = 8 u (t) t ≥ 0

Using MATLAB program, find

(a) x(t) when all the initial conditions are zero

(b) x(t) when x (0) = 1 and x(0)�  = 2.

Solution.
(a) x(t) when all the initial conditions are zero

>> x = dsolve (‘D2x = – 7*Dx – 5*x + 8’, ‘x(0) = 0’)
x =

8/5 + (– 8/5 – C2)*exp (1/2*(– 7 + 29^ (1/2))*t) + C2*exp (– 1/2*(7 + 29^ (1/2))*t)
(b) x(t) when x(0) = 1 and   = 2

>> x = dsolve (‘D2x = – 7*Dx – 5*x + 8’, ‘x (0) = 1’, ‘Dx (0) = 2’)
   x =

8/5 + (– 3/10 – 1/290*29^ (1/2))*exp (1/2*(– 7+29^ (1/2))*t) – 1/290*(– 1 + 3*29^
(1/2))*29^ (1/2)*exp (– 1/2*(7 + 29^ (1/2))*t)

Example 2.27. Given the differential equation

2

2
d x
dt

 + 12
dx
dt

 + 15x = 35t ≥ 0

Using MATLAB program, find

(a) x(t) when all the initial conditions are zero

(b) x(t) when x (0) = 0 and x(0)�  = 1.

Solution.
(a) x (t) when all the initial conditions are zero

>> x = dsolve (‘D2x = – 12*Dx – 15*x +35’, ‘x (0) = 0’)
x =

7/3+ (– 7/3 – C2)*exp ((– 6 + 21^ (1/2))*t) + C2*exp (– (6 + 21^ (1/2))*t)

(b) x (t) when x (0) = 0 and 
�

x (0) = 1.

>> x = dsolve (‘D2x = – 12*Dx – 15*x + 35’, ‘x (0) = 0’, ‘Dx (0) = 1’)
x =

7/3 + (– 7/6 – 13/42*21^ (1/2))*exp ((– 6 + 21^ (1/2))*t) – 1/126*(– 39 + 7*21^ (1/2))*21 ^
(1/2)*exp (– (6 + 21^ (1/2))*t)

Example 2.28. Find the inverse of the following matrix using MATLAB.

A =  

s 2 0
2 s 3
3 0 1

 
 − 
  
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Solution.
>> A = [s 2 0 ; 2 s – 3 ; 3 0 1] ;
>> inv (A)
ans =

[s/(s^2 – 22),      – 2/(s^2 – 22),      – 6/(s^2 – 22)]
[– 11/(s^2-22),       s/(s^2 – 22),     3*s/(s^2 – 22)]
[– 3*s/(s^2-22),       6/(s^2 – 22), (s^2 – 4)/(s^2 – 22)]

Example 2.29. Expand the following function F(s) into partial fractions using MATLAB.
Determine the inverse Laplace transform of F(s).

F(s) = 
4 3 2

1
s + 5s + 7s

The MATLAB program for determining the partial-fraction expansion is given below:
Solution.

>> b = [0 0 0 0 1];
>> a = [1 5 7 0 0];
>> [r, p, k] = residue (b, a)
r =

 0.0510 – 0.0648i
 0.0510 + 0.0648i

– 0.1020
 0.1429

p =
 – 2.5000 + 0.8660i

 – 2.5000 – 0.8660i
     0
     0

k = [ ]
% From the above MATLAB output, we have the following expression:

F(s) = 1

1

r
s p−

 + 2

2

r
s p−

 + 3

3

r
s p−

 + 4

4

r
s p−

F(s) = 
0.0510 0.0648
(2.5000 0.8660 )

i
s i

−
− +

 + 
+

− − −
(0.0510 0.0648 )
( 2.5000 0.8660 )

i
s i

+ 
0.1020

0s
−

−
 + 

0.1429
0s −

% Note that the row vector k is zero implies that there is no constant term in this exam-
ple problem.

% The MATLAB program for determining the inverse Laplace transform of F(s) is given
below:
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>> syms s
>> f = 1/(s^4 + 5*s^3 + 7*s^2);
>> ilaplace (f)
ans =

1/7*t – 5/49 + 5/49*exp (–)*cos (1/2*3^ (1/2)*t) +11/147*exp (– 5/2*t)*3^
(1/2)*sin(1/2*3^(1/2)*t)

Example 2.30. Expand the following function F(s) into partial fractions using MATLAB.
Determine the inverse Laplace transform of F(s).

F(s) = 
2

4 3 2

5s + 3s + 6

s + 3s + 7s + 12

Solution.
The MATLAB program for determining the partial-fraction expansion is given below:

>> b = [0 0 5 3 6];
>> a = [1 3 7 9 12];
>> [r, p, k] = residue(b, a)
r =

 – 0.5357 – 1.0394i

 – 0.5357 + 1.0394i
    0.5357 – 0.1856i

    0.5357 + 0.1856i
p =

 – 1.5000 + 1.3229i
 – 1.5000 – 1.3229i

 – 0.0000 + 1.7321i
 – 0.0000 – 1.7321i

k = [ ]
% From the above MATLAB output, we have the following expression:

F(s) = 1

1

r
s p−

 + 2

2

r
s p−

 + 3

3

r
s p−

 + 4

4

r
s p−

F(s) = 
0.5357 1.0394
( 1.500 1.3229 )

i
s i

− −
− − +

 + 
( 0.5357 1.0394 )

( 1.5000 1.3229 )
i

s i
− +

− − −

+ 0.5357 0.1856
( 0 1.7321 )

i
s i

−
− − +

 + 
0.5357 0.1856

( 0 1.7321 )
i

s i
−

− − −

% Note that the row vector k is zero implies that there is no constant term in this exam-
ple problem.

% The MATLAB program for determining the inverse Laplace transform of F(s) is given
below:
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>> syms s
>> f = (5*s^2 + 3*s +6)/(s^4 + 3*s^3 + 7*s^2 + 9*s +12);
>> ilaplace(f)
ans =

11/14*exp(– 3/2*t)*7^(1/2)*sin(1/2*7^(1/2)*t) – 15/14*exp
(– 3/2*t)*cos(1/2*7^(1/2)*t) + 3/14*3^(1/2)*sin(3^(1/2)*t)+15/14*cos(3^(1/2)*t)

Example 2.31. For the following function F(s):

F(s) = 
4 3 2

4 3 2

s + 3s + 5s + 7s + 25

s + 5s + 20s + 40s + 45

Using MATLAB, find the partial-fraction expansion of F(s). Also, find the inverse Laplace
transformation of F(s).

Solution.

F(s) =  
+ + + +

+ + + +

4 3 2

4 3 2

3 5 7 25
5 20 40 45

s s s s
s s s s

The partial-fraction expansion of F(s) using MATLAB program is given as follows:
num = [ 1  3  5  7  25];
den = [1  5  20  40  45];
[r, p, k] = residue(num, den)
r =
  – 1.3849 + 1.2313i
  – 1.3849 – 1.2313i
   0.3849 – 0.4702i
   0.3849 + 0.4702i
p =
 – 0.8554 + 3.0054i
 – 0.8554 – 3.0054i
 – 1.6446 + 1.3799i
 – 1.6446 – 1.3799i
k =
 1

From the MATLAB output, the partial-fraction expansion of F(s) can be written as
follows:

F(s) = 31 2 4

1 2 3 4( ) ( ) ( ) ( )
rr r r

s p s p s p s p
+ + +

− − − −
 + k

F(s) = 
( 1.3849 1.2313)
( 0.8554 3.005)

j
s j
− +

+ −
 + 

− −
+ +

( 1.3849 1.2313)
( 0.8554 3.005)

j
s j

 + (0.3849 0.4702)
( 1.6446 1.3799)

j
s j

−
+ −

 + (0.3849 0.4702)
( 1.6446 1.3779)

j
s j

+
+ +

 + 1
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Example 2.32. Obtain the partial-fraction expansion of the following function using
MATLAB:

F(s) = 
( )( )

( 2)( )( )2
8 s + 1 s + 3

s + s + 4 s + 6

Solution.

F(s) = 2

8( 1)( 3)
( 2)( 4)( 6)

s s
s s s

+ +
+ + +

 = 2 2

(8 8)( 3)
( 6 8)( 12 36)

s s
s s s s

+ +
+ + + +

The partial fraction expansion of F(s) using MATLAB program is given as follows:

EDU>> num = conv([8 8], [1 3]);

EDU>> den = conv([1 6 8], [1 12 36]);

EDU>> [r, p, k] = residue(num, den)

r =
    3.2500
   15.0000
   – 3.0000
   – 0.2500
p =
   – 6.0000
   – 6.0000
   – 4.0000
   – 2.0000
k = [ ]
From the above MATLAB result, we have the following expansion:

F(s) = 31 2 4

1 2 3 4( ) ( ) ( ) ( )
rr r r

s p s p s p s p
+ + +

− − − −
 + k

F(s) = 
3.25

( 6)s +
 + 

15
( 15)s −

 + 
3

( 3)s
−
+

 + 
0.25

( 0.25)s
−
+

 + 0

It should be noted here that the row vector k is zero, because the degree of the numerator
is lower than that of the denominator.

F(s) = 3.25e–6t + 15e15t – 3e–3t – 0.25e–0.25t.
Example 2.33. Find the Laplace transform of the following function using MATLAB.
(a) f(t) = 7t3 cos (5t + 60°)

(b) f(t) = – 7te– 5t

(c) f(t) = – 3 cos 5t

(d) f(t) = t sin 7t
(e) f(t) = 5 e–2t cos 5t

(f) f(t) = 3 sin(5t + 45º)
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(g) f(t) = 5 e–3t cos(t – 45º)

Solution. % MATLAB Program
>> syms t     % tell MATLAB that “t” is a symbol.
>> f = 7 * t^3*cos(5*t + (pi/3)); % define the function.
>> laplace(f)
ans =
– 84/(s^2 + 25)^3*s^2 + 21/(s^2 + 25)^2 + 336*(1/2*s – 5/2*3^(1/2))/(s^2 + 25)^4*s^3

– 168* (1/2*s – 5/2*3^(1/2))/(s^2 + 25)^3*s
>> pretty(laplace(f)) % the pretty function prints symbolic output
% in a format that resembles typeset mathematics.
               2                                                       1/2    3
            s                 21                 (1/2 s – 5/2 3   ) s
  -84 ---------- + ---------- + 336 ---------------------
         2        3       2         2              2        4
      (s  + 25)      (s  + 25)             (s  + 25)
                                       1/2
                   (1/2 s – 5/2 3   ) s
         – 168 --------------------
                           2         3
                        (s  + 25)
(b) >>syms t x

>>f = – 7*t*exp(– 5*t);
>> laplace(f, x)
ans =

– 7/(x + 5)^2
(c) >>syms t x

>>f = – 3*cos(5*t);
>> laplace(f, x)
ans =

– 3*x/(x^2 + 25)
(d) >>syms t x

>>f = t*sin(7*t);
>> laplace(f, x)
ans =

1/(x^2 + 49)*sin(2*atan(7/x))
(e) >>syms t x

>>f = 5*exp(– 2*t)*cos(5*t);
>> laplace(f, x)
ans =

5*(x + 2)/((x + 2)^2 + 25)
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(f) >>syms t x
>>f = 3*sin(5*t + (pi/4));
>> laplace(f, x)
ans =

3*(1/2*x*2^(1/2) + 5/2*2^(1/2))/(x^2 + 25)
(g) >>syms t x

>>f = 5*exp(– 3*t)*cos(t – (pi/4));
>> laplace(f, x)
ans =

5*(1/2*(x + 3)*2^(1/2)+1/2*2^(1/2))/((x + 3)^2 + 1)
Example 2.34. Generate partial-fraction expansion of the following function

F(s) = 
+

5

2 2

10 (s + 7)(s + 13)

s(s + 25)(s + 55)(s + 7s 75)(s + 7s + 45)

Solution:
Generate the partial fraction expansion of the following function:
numg = poly[– 7 – 13];
numg = poly([– 7 – 13]);
deng = poly([0 – 25 – 55 roots([1 7 75])’ roots([1 7 45])’]);
[numg, deng] = zp2tf(numg’, deng’, 1e5);
Gtf = (numg, deng);
Gtf = tf(numg,deng);
G = zpk(Gtf);
[r, p, k] = residue(numg,deng)
r =
  1.0e – 017 *
      0.0000
   – 0.0014
      0.0254
   – 0.1871
      0.1621
   – 0.0001

               0.0000
     0.0011

p =
  1.0e + 006 *
    4.6406
    1.4250
    0.3029
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    0.0336
    0.0027
    0.0001
    0.0000
       0

k = [ ]
Example 2.35. Determine the inverse Laplace transform of the following functions using

MATLAB.

(a) F(s) = 
s

s(s + 2)(s + 6)
  (b) F(s) = 

2
1

s (s + 5)

(c) F(s) = 2
3s + 1

(s + 2s + 9)
(d) F(s) = 2

s 25
s(s + 3s + 20)

−

Solution:
(a) >> syms s

>> f = s/(s*((s + 2)*(s + 6)));
>> ilaplace(f)
ans =
1/2*exp(– 4*t)*sinh(2*t)

(b) >> syms s
>> f = 1/((s^2)*(s + 5));
>> ilaplace(f)
ans =
1/3*t – 2/9*exp(– 3/2*t)*sinh(3/2*t)

(c) >>syms s
>> f = (3*s + 1)/(s^2 + 2*s + 9);
>> ilaplace(f)

ans =
3*exp(– t)*cos(2*2^(1/2)*t) – 1/2*2^(1/2)*exp(– t)*sin(2*2^(1/2)*t)
(d) >>syms s

>> f = (s – 25)/(s*(s^2 + 3*s + 25));
>> ilaplace(f)
ans =
5/4*exp(– 3/2*t)*cos(1/2*71^(1/2)*t)+23/284*71^(1/2)*exp(– 3/2*t)*sin
(1/2*71^(1/2)*t) – 5/4

Example 2.36. Find the inverse Laplace transform of the following function using
MATLAB.

G(s) = 
2

2

(s + 9s + 7)(s + 7)

(s + 2)(s + 3)(s + 12s + 150)
.
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Solution:
% MATLAB Program
>> syms s     % tell MATLAB that “s” is a symbol.
>>G = (s^2 + 9*s +7)*(s + 7)/[(s + 2)*(s + 3)*(s^2 + 12*s + 150)]; % define the function.
>>pretty(G) % the pretty function prints symbolic output
% in a format that resembles typeset mathematics.
                            (s  + 9 s + 7) (s + 7)
                   --------------------------------------------
                       (s + 2) (s + 3) (s + 12 s + 150)
>> g = ilaplace(G); % inverse Laplace transform
>>pretty(g)
                                44                     2915                            1/2
  – 7/26 exp(– 2 t) + --- exp(– 3 t) + ------ exp(– 6 t) cos(114     t)
                               123                    3198
               889                       1/2           1/2
         + ------- exp(– 6 t) 114    sin(114      t)
            20254
Example 2.37. Generate the transfer function using MATLAB.

G(s) = 
2 2

3(s + 9)(s + 21)(s + 57)

s(s + 30)(s + 5s + 35)(s + 28s + 42)

Using
(a) the ratio of factors

(b) the ratio of polynomials.
Solution.
% MATLAB Program:
‘a. The ratio of factors’
>>Gzpk = zpk([– 9 – 21 – 57] , [0 – 30 roots([1 5 35]) ‘roots([1 28 42])’],3)
% zpk is used to create zero-pole-gain models or to convert TF or
% SS models to zero-pole-gain form.
‘b. The ratio of polynomials’
>> Gp = tf(Gzpk)  % generate the transfer function
% Computer response:
ans =
(a) The ratio of factors
Zero/pole/gain:

     3 (s + 9) (s + 21) (s + 57)
----------------------------------------------------------

s (s + 30) (s + 26.41) (s + 1.59) (s^2 + 5s + 35)
ans =
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(b) The ratio of polynomials
Transfer function:
            3 s^3 + 261 s^2 + 5697 s + 32319
------------------------------------------------------------------------------
s^6 + 63 s^5 + 1207 s^4 + 7700 s^3 + 37170 s^2 + 44100 s
Example 2.38. Generate the transfer function using MATLAB.

G(s) = 
4 3 2

5 4 3 2

s + 20s + 27s + 17s + 35
s + 8s + 9s + 20s + 29s + 32

.

Using
(a) the ratio of factors

(b) the ratio of polynomials.
Solution.
% MATLAB Program:
% a. the ratio of factors
>>Gtf = tf([1 20 27 17 35] , [1 8 9 20 29 32]) % generate the
% transfer function
% Computer response:
Transfer function:
s^4 + 20 s^3 + 27 s^2 + 17 s + 35
---------------------------------------------
 s^4 + 8 s^3 + 9 s^2 + 20 s + 29
% b. the ratio of polynomials
>> Gzpk = zpk(Gtf)  % zpk is used to create zero-pole-gain models
% or to convert TF or SS models to zero-pole-gain form.
% Computer response:
 Zero/pole/gain:
 (s +18.59) (s + 1.623) (s^2 – 0.214s + 1.16)
-------------------------------------------------------------
(s + 7.042) (s + 1.417) (s^2  – 0.4593s + 2.906)

���� ������	


In this chapter, the MATLAB environment which is an interactive environment for
numeric computation, data analysis, and graphics was presented. Arithmetic operations, display
formats, elementary built-in functions, arrays, scalars, vectors or matrices, operations with
arrays including dot product, array multiplication, array division, inverse and transpose of a
matrix, determinants, element by element operations, eigenvalues and eigenvectors, random
number generating functions, polynomials, system of linear equation, script files, programming
in MATLAB, the commands used for printing information and generating 2-D and 3-D plots,
input/output in MATLAB was presented with illustrative examples. MATLAB's functions for
symbolic mathematics were introduced. These functions are useful in performing symbolic
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operations and developing closed-form expressions for solutions to linear algebraic equations,
ordinary differential equations and systems of equations. Symbolic mathematics for determining
analytical expressions for the derivative and integral of an expression was also presented.
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PROBLEMS

1. Compute the following quantity using MATLAB in the Command Window:

 

 −  + + +
  π− 

7 3
410

2 2

17 5 1 5 log ( )
ln( ) 11

12115 13

e
e

2. Compute the following quantity using MATLAB in the Command Window:

 B = 
+tan sin 2

cos
x x

x
 + log |x5 – x2 | + cosh x – 2 tanh x.

for x = 5π/6.
3. Compute the following quantity using MATLAB in the Command Window:

+= + + + + +
+ +

10
3

10

14 log( )
ln(2)

log ( )| |
a

c

b cab a b
x a c

c a b cab e

+ 2 sinh a – 3 tanh b
for a = 1, b = 2 and c = 1.8.

4. Use MATLAB to create
(a) a row and column vectors that has the elements: 11, – 3, e7.8, ln(59), tan(π/3), 5

log10(26).
(b) a row vector with 20 equally spaced elements in which the first element is 5.
(c) a column vector with 15 equally spaced elements in which the first element is – 2.

5. Enter the following matrix A in MATLAB and create:

 
 
 
 =
 
 
  

1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24
25 23 27 28 29 30 31 32
33 34 35 36 37 38 39 40

A

(a) a 4 × 5 matrix B from the 1st, 3rd, and the 5th rows, and the 1st, 2nd, 4th, and
8th columns of the matrix A.

(b) a 16 elements-row vector C from the elements of the 5th row, and the 4th and 6th
columns of the matrix A.

6. Given the function y = ( )+ +
1.8

2 0.02 xx e  ln x. Determine the value of y for the fol-

lowing values of x : 2, 3, 8, 10, – 1, – 3, – 5, – 6.2. Solve the problem using MATLAB by
first creating a vector x, and creating a vector y, using element-by-element calculations.

7. Define a and b as scalars, a = 0.75, and b = 11.3, and x, y and z as the vectors, x = 2, 5,
1, 9, y = 0.2, 1.1, 1.8, 2 and z = – 3, 2, 5, 4. Use these variables to calculate A using
element-by-element computations for the vectors with MATLAB.
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−
 +  = +

+

1.1 2 5

/ 3
2

( )b a

z y
x y z xA a
a b z

8. Enter the following three matrices in MATLAB and show that

 

−     
     = − = = − −     
     − −     

1 2 3 12 5 4 7 13 4
8 5 7 7 11 6 2 8 5
8 4 6 1 8 13 9 6 11

A B C

(a) A + B = B + A
(b) A + (B + C) = (A + B)C
(c) 7(A + C) = 7(A) + 7(C)
(d) A * (B + C) = A * B + A * C

9. Consider the function

H(s) = 
( )
( )

n s
d s

where n(s) = s4 + 6s3 + 5s2 + 4s + 3
d(s) = s5 + 7s4 + 6s3 + 5s2 + 4s + 7

(a) Find n (– 10), n (– 5), n (– 3), and n (– 1)
(b) Find d (– 10), d (– 5), d (– 3), and d (– 1)
(c) Find H(– 10), H(– 5), H(– 3), and H(– 1)

10. Consider the polynomials
p1(s) = s3 + 5s2 + 3s + 10
p2(s) = s4 + 7s3 + 5s2 + 8s + 15
p3(s) = s5 + 15s4 + 10s3 + 6s2 + 3s + 9

Determine
(a) p1(2), p2(2), and p3(3)
(b) p1(s) p2(s) p3(s)
(c) p1(s) p2(s)/p3(s)

11. The following polynomials are given:
p1(x) = x5 + 2x4 – 3x3 + 7x2 – 8x + 7
p2(x) = x4 + 3x3 – 5x2 + 9x + 11
p3(x) = x3 – 2x2 – 3x + 9
p4(x) = x2 – 5x + 13
p5(x) = x + 5

Use MATLAB functions with polynomial coefficient vectors to evaluate the expres-
sions at x = 2.

12. Determine the roots of the following polynomials:
(a) p1(x) = x7 + 8x6 + 5x5 + 4x4 + 3x3 + 2x2 + x + 1
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(b) p2(x) = x6 – 7x6 + 7x5 + 15x4 – 10x3 – 8x2 + 7x + 15
(c) p3(x) = x5 – 13x4 + 10x3 + 12x2 + 8x – 15
(d) p4(x) = x4 + 7x3 + 12x2 – 25x + 8
(e) p5(x) = x3 + 15x2 – 23x + 105
(f) p6(x) = x2 – 18x + 23
(g) p7(x) = x + 7

13. Consider the two matrices

A = 
1 0 2

2 5 4

1 8 7

 
 
 
 − 

    and B =  

7 8 2

3 5 9

1 3 1

 
 
 
 − 

Using MATLAB, determine the following:
(a) A + B
(b) AB
(c) A2

(d) AT

(e) B–1

(f) BTAT

(g) A2 + B2 – AB
(h) determinant of A, determinant of B and determinant of AB.

14. Use MATLAB to define the following matrices:

A = 
2 1

0 5

7 4

 
 
 
  

B = 
5 3

2 4

 
 − − 

C = 

2 3

5 2

0 3

 
 − − 
  

D = [1 2]

Compute matrices and determinants if they exist.
(a) (ACT)–1

(b) |B|
(c) |ACT|
(d) (CTA)–1

15. Consider the two matrices

A = 
3 2

5 10 2j j

π 
 

+  
B = 

7 15

2 18

j j− 
 π 

Using MATLAB, determine the following:
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(a) A + B
(b) AB
(c) A2

(d) AT

(e) B–1

(f) BTAT

(g) A2 + B2 – AB
16. Consider the two matrices

A = 
1 0 1

2 3 4

1 6 7

 
 
 
 − 

   and B = 

7 4 2

3 5 6

1 2 1

 
 
 
 − 

Using MATLAB, determine the following:
(a) A + B
(b) AB
(c) A2

(d) AT

(e) B–1

(f) BTAT

(g) A2 + B2 – AB
(h) det A, det B, and det of AB.

17. Find the inverse of the following Matrices:

(a) A = 

3 2 1

1 5 4

5 7 9

 
 − 
 − 

(b) B = 

1 6 3

4 5 7

8 4 2

 
 − − 
  

(c) C = 

1 2 5

4 7 2

7 8 1

− − 
 − 
 − − 

18. Find the inverse of the following matrices using MATLAB.

(a)

3 2 0

2 1 7

5 4 9

 
 − 
  

(b) 

4 2 5

7 1 6

2 3 7

− 
 − 
  

(c) 

1 2 5

4 3 7

7 6 1

− − 
 
 
 − 

(d)

3 2 1

1 2 4

5 7 8

 
 − 
 − 

(e) 

1 2 3

4 5 7

8 4 1

 
 − − 
  

(f) 

1 2 5

4 5 6

7 8 1

− − 
 − 
 − 
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19. Determine the eigenvalues and eigenvectors of the following matrices using MATLAB.

A = 
1 2

1 5

− 
 
 

, B = 
1 5

2 7

 
 − 

20. If A = 

4 6 2

5 6 7

10 5 8

 
 
 
  

Use MATLAB to determine the following:
(a) the three eigenvalues of A
(b) the eigenvectors of A
(c) Show that AQ = Qd, where Q is the matrix containing the eigenvectors as col-

umns and d is the matrix containing the corresponding eigenvalues on the main
diagonal and zeros else where.

21. Determine eigenvalues and eigenvector of A using MATLAB.

(a) A = 
0.5 0.8

0.75 1.0

− 
 
 

    (b) A = 
8 3

3 4

 
 − 

22. Determine the eigenvalues and eigenvectors of the following matrices using MATLAB.

(a) A = 1 2

1 3

− 
 
 

(b) A = 
1 5

2 4

 
 − 

(c) A =
4 1 5

2 1 3

6 7 9

− 
 
 
 − 

(d) A = 

3 5 7

2 4 8

5 6 10

 
 
 
  

(e) A =

3 0 2 1

1 2 5 4

7 1 2 6

1 2 3 4

 
 
 
 −
 −  

(f) A = 

1 3 5 7

2 1 2 4

3 2 1 1

4 1 0 6

 
 − − 
 
 
  

23. Determine the eigenvalues and eigenvectors of A * B using MATLAB.

A = 

3 1 2 1

1 2 7 4

7 1 8 6

1 2 3 4

− 
 
 
 −
 

−  

 B = 

1 2 5 7

2 1 2 4

3 2 5 1

4 1 3 6

 
 − − 
 
 

−  

24. Determine the eigenvalues and eigenvectors of the following matrices using MATLAB.

(a) A =
1 2

1 3

− 
 
 

(b) A = 
1 5

2 4

 
 − 
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(c) A =
4 1 5

2 1 3

6 7 9

− 
 
 
 − 

(d) A = 

3 5 7

2 4 8

5 6 10

 
 
 
  

(e) A =

3 0 2 1

1 2 5 4

7 1 2 6

1 2 3 4

 
 
 
 −
 

−  

(f) A = 

1 3 5 7

2 1 2 4

3 2 1 1

4 1 0 6

 
 − − 
 
 
  

25. Determine the eigenvalues and eigenvectors of A and B using MATLAB

(a) A = 

4 5 3

1 2 3

2 5 7

− 
 − 
  

B = 

1 2 3

8 9 6

5 3 1

 
 
 
 − 

26. Determine the eigenvalues and eigenvectors of A = a*b using MATLAB.

a = 

6 3 4 1

0 4 2 6

1 3 8 5

2 2 1 4

− 
 
 
 
 
  

b = 

0 1 2 3

4 5 6 1

1 5 4 2

2 3 6 7

 
 − 
 
 

−  

27. Determine the values of x, y, and z for the following set of linear algebraic equations:
           x2 – 3x3 = – 7
  2x1 + 3x2 – x3 = 9
4x1 + 5x2 – 2x3 = 15

28. Determine the values of x, y, and z for the following set of linear algebraic equations:
(a) 2x + y – 3z = 11

4x – 2y + 3z = 8
– 2x + 2y – z = – 6

(b) 2x – y = 10
– x + 2y – z = 0
– y + z = – 50

29. Solve the following set of equations using MATLAB.
(a) 2x1 + x2 + x3 – x4 = 12

x1 + 5x2 – 5x3 + 6x4 = 35
– 7x1 + 3x2 – 7x3 – 5x4 = 7
x1 – 5x2 + 2x3 + 7x4 = 21

(b) x1 – x2 + 3x3 + 5x4 = 7
2x1 + x2 – x3 + x4 = 6
– x1 – x2 – 2x3 + 2x4 = 5
x1 + x2 – x3 + 5x4 = 4
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30. Solve the following set of equations using MATLAB.
(a) 2x1 + x2 + x3 – x4 = 10

x1 + 5x2 – 5x3 + 6x4 = 25
– 7x1 + 3x2 – 7x3 – 5x4 = 5
x1 – 5x2 + 2x3 + 7x4 = 11

(b) x1 – x2 + 3x3 + 5x4 = 5
2x1 + x2 – x3 + x4 = 4
– x1 – x2 + 2x3 + 2x4 = 3
x1 + x2 – x3 + 5x4 = 1

31. Solve the following set of equations using MATLAB.
(a) x1 + 2x2 + 3x3 + 5x4 = 21

– 2x1 + 5x2 + 7x3 – 9x4 = 17
5x1 + 7x2 + 2x3 – 5x4 = 23

– x1 – 3x2 – 7x3 + 7x4 = 26

(b) x1 + 2x2 + 3x3 + 4x4 =9

2x1 – 2x2 – x3 + x4 = – 5

x1 – 3x2 + 4x3 – 4x4 = 7

2x1 + 2x2 – 3x3 + 4x4 = – 6

32. Generate a plot of

y(x) = e–0.7x sin ωx

where ω = 15 rad/s, and 0 ≤ x ≤ 15. Use the colon notation to generate the x vector in
increments of 0.1.

33. Plot the following functions using MATLAB.

(a) r2 = 5 cos 3 t 0 ≤ t ≤ 2π
(b) r2 = 5 cos 3 t 0 ≤ t ≤ 2π

x = r cos t,  y = r sin t

(c) y1 = e–2x cos x 0 ≤ x ≤ 20

y2  = e2x

(d) y =  cos (x) /x – 5π ≤ x ≤ 5π
(e) f = e–3t/5  cos t 0 ≤ t ≤ 2π
(f) z = – (1/3) x2 + 2xy + y2 | x | ≤ 7, | y | ≤ 7

34. Use MATLAB for plotting 3.D data for the following functions:

(a) z = cos x cos y
+−

2 2

5
x y

e | x | ≤ 7, | y | ≤ 7

(b) Discrete data plots with stems
x = t,   y = t cos (t)
z = et/5 – 2 0 ≤ x ≤ 5π

(c) An ellipsoid of radii rx = 1, ry = 2.5 and rz = 0.7 centered  at the origin
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(d) A cylinder generated by
  r = sin (5 π z) + 3 0 ≤ z ≤  1

0 ≤ θ ≤  2π
35. Obtain the plot of the points for 0 ≤ t ≤ 6π when the coordinates x, y, and z are given as

a function of the parameter t as follows:

 

=

=
=

sin (3 )

cos (3 )
0.8

x t t

y t t
z t

36. Obtain the mesh and surface plots for the function =
+

2

2 2
2xyz

x y
 over the domain

– 2 ≤ x ≤ 6 and 2 ≤ y ≤ 8.

37. Plot the function z = 
2 21.52 x y− +  sin (x) cos (0.5y) over the domain – 4 ≤ x ≤ 4 and

– 4 ≤ y ≤ 4.
(a) Mesh plot
(b) Surface plot
(c) Mesh curtain plot
(d) Mesh and contour plot
(e) Surface and contour plot
(f) Surface plot with lighting
(g) Waterfall plot
(h) 3-D contour plot
(i) 2-D contour plot

38. Plot the function y = |x| cos (x) for – 200 ≤ x ≤ 200.
39. Plot the following functions on the same plot for 0 ≤ x ≤ 2π using the plot function:

(a) sin2 (x)
(b) cos2 x

(c) cos (x)
40. (a) Generate an overlay plot for plotting three lines

y1 = sin t
y2 = t

y3 = t – 
3

3 !
t

 + 
5

5 !
t

 + 
7

7 !
t

0 ≤ t ≤ 2π

Use (i) the plot command
(ii) the hold command
(iii) the line command

(b) Use the functions for plotting x-y data given in Table 6.5(b) for plotting the
following functions.
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(i) f(t) = t cos t 0 ≤ t ≤ 10π
(ii) x = et

y = 100 + e3t 0 ≤ t ≤ 2π
41. (a) Plot the parametric space curve of

x(t) = t
y(t) = t2

z(t) = t3 0 ≤ t ≤ 3.0

(b) z = 2 2
7

1 x y

−
+ +

 | x | ≤ 10, | y | ≤ 10

42. (a) Plot the parametric space curve of
x (t) = t
y (t) = t2

z (t) = t3 0 ≤ t ≤ 3.0
(b) z  = – 7 / (1 + x2 + y2)     | x | ≤ 10, | y | ≤ 10

43. Perform the following symbolic operations using MATLAB. Consider the given sym-
bolic expressions have been defined.

S1 = ‘2/(x – 5)’;
S2 = ‘x ^ 5 + 9 * x – 15’ ;
S3 = ‘(x ^ 3 + 2 * x + 9) * (x * x – 5)’ ;

(a) S1S2/S3 (b) S1/S2S3 (c) S1/(S2)2 (d) S1S3/S2 (e) (S2)2/(S1S3)
44. Solve the following equations using symbolic mathematics.

(a) x2 + 9 = 0
(b) x2 + 5x – 8 = 0
(c) x3 + 11x2 – 7x + 8 = 0
(d) x4 + 11x3 + 7x2 – 19x + 28 = 0
(e) x7 – 8x5 + 7x4 + 5x3 – 8x + 9 = 0

45. Determine the values of x, y, and z for the following set of linear algebraic equations:
   2x + y – 3z = 11
 4x – 2y + 3z = 8
– 2x + 2y – z = – 6

46. Determine the values of x, y, and z for the following set of linear algebraic equations:
2x – y = 10
– x + 2y – z = 0
– y + z = – 50

47. Determine the solutions of the following first-order ordinary differential equations
using MATLAB's symbolic mathematics.
(a) y′ = 8x2 + 5 with initial condition y(2) = 0.5.
(b) y′ = 5x sin2 (y) with initial condition y(0) = π/5.
(c) y′ = 7x cos2 (y) with initial condition y(0) = 2.
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(d) y′ = – 5x + y with initial condition y(0) = 3.
(e) y′ = 3y + e–5x with initial condition y(0) = 2.

48. (a) Given the differential equation

2

2
d x

dt
 + 7

dx
dt

 + 5x = 8 u(t) t ≥ 0

Using MATLAB program, find
(i) x(t) when all the initial conditions are zero

(ii) x(t) when x(0) = 1 and x� (0)  = 3.
(b) Given the differential equation

2

2
d x

dt
 + 12

dx
dt

 + 15x = 35 t ≥ 0

Using MATLAB program, find
  (i) x(t) when all the initial conditions are zero

 (ii) x(t) when x(0) = 0 and 
�

x (0) = 1.

(iii) For the following differential equation, use MATLAB to find x(t) when x(t)
when x(0) = – 1 and x� (0) = 1

2

2
d x

dt
 + 8

dx
dt

 – 4x = 18 u(t)

(c) For the following differential equation, use MATLAB to find x(t) when x(t) when
x(0) = – 1 and x� (0) = 1

 
2

2
d x

dt
 + 15

dx
dt

 + 8x = – 9 u(t)

(d) For the following differential equation, use MATLAB to find x(t) when x(t) when
x(0) = – 1 and x� (0) = 1

2

2
d x

dt
 + 19

dx
dt

 + 9x = – 3 u(t)

49. For the following differential equations, use MATLAB to find x(t) when (a) all the
initial conditions are zero, (b) x(t) when x(0) = 1 and x� (0) = – 1.

(a)
2

2
d x

dt
 + 10

dx
dt

 + 5x = 11

(b)  
2

2
d x

dt
 – 7

dx
dt

 – 3x = 5

(c)  
2

2
d x

dt
 + 3

dx
dt

 + 7x = – 15
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(d)  
2

2
d x

dt
 + 7

dx
dt

 + 7x = 26

50. Obtain the first and second derivatives of the following functions using MATLAB’s
symbolic mathematics.
(a) F(x) = x5 – 8x4 + 5x3 – 7x2 + 11x – 9
(b) F(x) = (x3 + 3x – 8)(x2 + 21)
(c) F(x) = (3x3 – 8x2 + 5x + 9)/(x + 2)
(d) F(x) = (x5 – 3x4 + 5x3 + 8x2 – 13)2

(e) F(x) = (x2 + 8x – 11)/(x7 – 7x6 + 5x3 + 9x – 17)
51. Determine the values of the following integrals using MATLAB’s symbolic functions.

(a) 7 5 3 25 3 8 7x lx x x− + − +∫
(b)  cosx x∫
(c)  2 / 3 2sin 2x x∫

(d)  
1.8 2
0.2

sinx x dx∫

(e)  
0.2

1
| |x dx

−

−∫
52. Given the differential equation

2

2
d x

dt
 + 3

dx
dt

 + x = 98 t ≥ 0

Using MATLAB program, find
(a) x(t) when all the initial conditions are zero

(b) x(t) when x(0) = 0 and x� (0) = 2
53. Determine the inverse of the following matrix using MATLAB.

A =  

3 2 0
7 – – 5
3 0 – 3

s
s s

s

 
 
 
  

54. Expand the following function F(s) into partial fractions with MATLAB:

F(s) = 
2

4 3 2

35 +7 +8 +30
+15 + 62 + 85 + 25

s s s
s s s s

55. Determine the Laplace transform of the following time functions using MATLAB.
(a) f (t) = u (t + 9)
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(b) f (t) = e5t

(c) f (t) = (5t + 7)
(d) f (t) = 5u (t) + 8e7t – 12e–8t

(e) f (t) = e–t + 9t3 – 7t–2 + 8
(f) f (t) = 7t4 + 5t2 – e–7t

(g) f (t) = 9 u t + 5e–3t

56. Determine the inverse Laplace transform of the following rotational function using
MATLAB.

F(s) = 2

7
5 6s s+ +

 = 
7

( 2)( 3)s s+ +

57. Determine the inverse transform of the following function having complex poles

F(s) = 3 2

15
( 5 11 10)s s s+ + +

58. Determine the inverse Laplace transform of the following functions using MATLAB:

(a) F(s) = 
( 2)( 3)( 5)

s
s s s s+ + +

(b) F(s) = 2

1
( 7)s s +

(c) F(s) = 
3

5 9
( 8 5)

s
s s

+
+ +

(d) F(s) = 2

28

( 9 33)

s

s s s

−
+ +

.



Chapter 3
MATLAB TUTORIAL
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MATLAB has an excellent collection of commands and functions that are useful for solv-
ing control engineering problems.  The problems presented in this chapter are basic linear
control systems and are normally presented in introductory control courses. The application of
MATLAB to the analysis and design of control systems is presented in this chapter with a
number of illustrative examples. The MATLAB computational approach to the transient re-
sponse analysis, steps response, impulse response, ramp response, and response to the simple
inputs are presented. Plotting root loci, Bode diagrams, polar plots, Nyquist plot, Nichols plot,
and state space method are obtained using MATLAB.

��� ��
���������������� 
�
�����

Transient responses include the step response, impulse response, and ramp response.
They are often used to investigate the time-domain characteristics of control systems. Tran-
sient response characteristics including the rise time, peak time, maximum overshoot, settling
time, and steady state error can be obtained from the step response.

When the numerator and denominator of a closed-loop transfer function are known, the
commands step (num, den), step (num, den, t) in MATLAB can be used to generate plots of
unit- step responses. Here, t is the user specified time.

��� ��������� ��� �����
�����	�����

3.3.1 Case 1: State Space Approach
Consider a system defined in state-space given by

  �x  = Ax (3.1)
x(0) = xo

Assuming that there is no external input acting on the system, the response x(t) knowing
the initial condition x(0) and that x is an n-vector, is obtained as follows:

Taking Laplace transform of both sides of Eq. (3.1), we obtain
s x(s) – x(0) = AX (s) (3.2)

Equation (3.2) can be rearranged as
s x (s) = AX (s) + x(0) (3.3)
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Taking inverse Laplace transform of Eq. (3.3), we get

 �x  = A x + x(0) δ (t) (3.4)

Defining �z  = x, Eq. (3.4) can be written as

     
. .
z  = A �z  + x(0) δ (t) (3.5)

Integrating Eq. (3.5), we obtain

�z  = A z + x (0) 1(t) = A z + B u (3.6)
Where    B = x (0)
and u = 1(t)

Noting that z = x and �x (t) = z(t), we have

x = �z  = A z + B u (3.7)
The response to initial condition is obtained by solving Eqns. (3.6) and (3.7).
The corresponding MATLAB command used to obtain the response curves are given as

follows:
[x, z, t] = step (A, B, A, B);
x1 = [1 0 0 …0] * x′;
x2 = [1 0 0 …0] * x′;

�

xn = [0 0 0 …1] * x′;
         plot (t, x1, x2,…, t, xn)

3.3.2 Case 2: State Space Approach
Consider the system defined in state space is by

�x  = A x                x (0) = x0 (3.8)

y = C x (3.9)
Where x is an n vector and y is an m vector.

By defining

�z  = x       (3.10)
We obtain

�z  = A z + x (0) 1(t) = Az + B u       (3.11)
Where B = x (0)   and    u = 1(t)       (3.12)
Since x = z, Eq. (3.9) becomes

y = C �z       (3.13)
From Eqns. (3.11) and (3.13) , we obtain
            y = C (Az + Bu ) = CAz + CB u                (3.14)
The response of the system is obtained from the Eqns. (3.11) and (3.14) to a given initial

condition
The following MATLAB commands may be used to obtain the response curves:

[y, z, t] = step (A, B, C*A , C*B);
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y1 = [1  0  0 …0] * y′;
         y2 = [0  1  0 …0] * y′;                                                 (3.15)

�

ym = [0  0  0 …1] * y′;
plot ( t, y1 , t, y2 ,........, t, ym)

where the output curves are y1 , y2,…, ym verses  t.

��� �����	���	����������

The standard form of a second- order system is defined by

G(s) = 
ω

+ ξω + ω

2

2 22
n

n nS S
 (3.16)

Where ξ is the damping ratio of the system and ωn is the undamped natural frequency of the
system.

The dynamic behavior of the second order system is then described in terms of two pa-
rameters ξ and ωn.

If 0 < ξ < 1, the closed loop poles are complex conjugates and lie in the left-half s plane.
The system is called underdamped, and the transient response is oscillatory, If ξ = 0, the tran-
sient response does not die out. If ξ  = 1, the system is called critically damped. Overdamped
system correspond to ξ  = 1.

 Given ωn and ξ, then the MATLAB command
        printsys (num, den)

or
        printsys(num, den, s)
prints the num/den as a ratio of polynomials in s .
The unit – step response of the transfer – function system using MATLAB is obtained

with the use of step – response commands with left – hand arguments.
        c = step (num, den, t)

or
        [y, x, t] = step (num, den, t)

��� ��������
�������

Locus is defined as a set of all points satisfying a set of conditions. The term root refers to
the roots of the characteristic equation, which are the poles of the closed-loop transfer function.
These poles define the time response of the system and hence the performance and stability of
the system. Hence, root-locus defines a graph of the poles of the closed-loop transfer function as
the system parameter, such as the gain is varied.

Evan’s root locus method, or simply root-locus method, gives all closed-loop poles graphi-
cally, using the knowledge provided by the open-loop poles and open-loop zeros. A root-locus
plot is composed of as many individual loci as there are poles. Individual loci are referred to as
branches of the root locus.
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The poles of a transfer function can be shown graphically in the s-plane by means of a
pole-zero map. The root locus method is an analytical method for displaying the location of the
poles of the closed-loop transfer function

 +1
G
GH

as a function of the gain factor K of the open-loop transfer function GH. The method is called
the root locus analysis. The root locus analysis has the advantage that this method requires
only the location of the poles and zeros of GH known and the factorization of the characteristic
polynomial is not required. The method gives accurate time-domain response as well as fre-
quency response information.

The root-locus method is based on the fact that the values of s that make the transfer
function around the loop equal – 1 must satisfy the characteristic equation of the system. The
locus of roots of the characteristic equation of the closed-loop system as the gain is varied from
zero to infinity gives the root-loci plot. The root locus plot indicates the contributions of each
open-loop pole or zero to the locations of the closed-loop poles.

The root locus method allows the prediction of the effects on the location of the closed-
loop poles of varying the gain value or adding open-loop poles and/or open-loop zeros. Fig. 3.1
shows a canonical feedback control system whose closed-loop transfer function is given by

 
C
R

 = 
+1
G
GH

(3.17)

G

H

R C
+

–

Fig. 3.1.

If the open-loop transfer function GH is represented by

GH = 
KN
D

(3.18)

Where D and N are finite polynomials in the complex variable s, and K is the open-loop gain
factor, then the closed-loop transfer function can be written as

 
C
R

 = 
+1 /

G
KN D

 = 
+
GD

D DN
(3.19)

The roots of the characteristic equation gives the closed-loop poles. That is
D + KN = 0 (3.20)

As the open-loop gain factor K is varied, the location of these roots in the s-plane changes.
A locus of these roots plotted in the s-plane as a function of K is known as a root locus. We
observe from Eq. (3.4) that when K = 0, the roots of the polynomial D gives the poles of the open-
loop transfer function GH. On the other hand, as K becomes very large, then the roots will
become those of the polynomial N (the open-loop zeros). Hence, the loci of the closed-loop poles
originate from the open-loop poles and terminate at the open-loop zeros ad K varies from zero to
infinity.
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Consider the system equation

1 + 
+ + +

+ + +
1 2

1 2

( )( ) ... ( )
( )( ) ... ( )

n

n

K s z s z s z
s p s p s p

 = 0 (3.21)

Equation (3.17) can be written as

1 + K
num
den

 = 0 (3.22)

Where num is the numerator of the polynomial and den is the denominator polynomial, and K
is the gain (K > 0). The vector K contains all the gain values for which the closed loop poles are
to be computed.

The root loci is plotted by using the MATLAB command
rlocus (num, den)

The gain vector K is supplied by the user.
The matrix r and gain vector K are obtained by the following MATLAB commands:

[r, k] = rlocus (num, den)
[r, k] = rlocus (num, den, k)
[r, k] = rlocus (A, B, C, D)
[r, k] = rlocus (A, B, C, D, K) (3.23)
[r, k] = rlocus (sys)

In Eqns. (3.23), r has length K rows and length [den – 1] columns containing the complex
root locations.

For plotting the root loci, the MATLAB command plot (r, ‘  ‘) is used.
The following MATLAB command are used for plotting the root loci
with mark ‘0’ or ‘x’:

r = rlocus (num, den)
plot (r, ‘0’)  or  plot (r, ‘x’)

MATLAB provides its own set of gain values used to compute a root locus plot. It also
uses the automatic axis scaling features of the plot command.

��� ��	�� 	�
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Polar plot is a plot of the magnitude |G(jω)H(jω)| and phase angle |G(jω)H(jω)| in polar
coordinates for various values of frequencies ranging from 0 to ∞ then – ∞ to 0.

Bode plot is a plot of magnitude |G(jω)H(jω)| in decibels versus logω and phase angle
|G(jω)H(jω) | versus log ω in rectangular coordinates.

Magnitude versus phase angle plot or gain-phase plot is a plot of magnitude |G(jω)H(jω)|
in decibels versus phase angle |G(jω)H(jω) | in rectangular coordinates with frequency as vary-
ing parameter.

In practice the frequency-functions of the system are so complex and long that the char-
acteristic of the system cannot be determined at the desired frequency just only by inspection of
the system frequency function. Hence the frequency functions of systems are plotted in graphi-
cal forms, which indicate the system characteristics. Any curve giving information regarding
the gain or phase shift of the frequency function is known as the frequency response of the
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system. In polar-plots the amplitude of G(jω) is plotted as the distance from origin while the
phase-angle is plotted as angular displacement from right hand horizontal axis on the polar
graph. These plots are simple to construct and easily provide the information regarding the
magnitude and phase-angle of G(jω) at any desired frequency as compared to rectangular-plots
because polar-plot contains the ready information of both the parameters, amplitude and phase
angle.

A transfer function G(s) may be represented in the frequency domain as a sinusoidal
transfer function by substituting jω for s in the expression for G(s). The resulting form G(jω) is
a complex function of the single variable ω. Thus it can be plotted in 2-dimensions with ω as a
parameter and written in the following equivalent form:

Polar form: G(jω) = |G(jω)| |φ(ω)|
Euler form: G(jω) = |G(jω)| (cos φ(ω) + j sin φ(ω))

Here |G(jω)| is the magnitude of complex function and φ(ω) is the phase angle = arg p(ω).
Bode diagrams are rectangular plots. Bode diagram are also known as logarithmic plot

and consist of two graphs: the first one is a plot of the logarithmic of the magnitude of a sinusoidal
transfer function, the second one is a plot of the phase angle. Both these graphs are plotted
against the frequency on a logarithmic scale. Bode analysis is similar to Nyquist analysis in
that here also the graphical representation of the open-loop frequency response function G(ω)H(ω),
is employed. Bode-plot consists of two graphs: the magnitude of G(ω)H(ω), and the phase angle
of G(jω)H(jω), both plotted as a function of frequency ω. Logarithmic scales are used for the
frequency axes and for |G(jω)H(jω)|. Bode plots illustrate the relative stability of a system.

The following frequency-domain specifications are used:
If the Nyquist-plot does not cross the critical point (– 1 + j0), the system is found to be

stable. The frequency (ω1) at which the magnitude |G(jω)H(jω)| equals to one is called the gain-
cross over frequency. If the plot at ω1 is rotated through an angle φ in clockwise direction, the
point ω = ω1 and critical point (– 1 + j0) are coincident and this indicates that the closed-loop
system is marginally stable. Any further rotation leads to instability. The angle φ is known as
phase-margin. Intersection of the plot with negative real axis corresponds to frequency ω = ω2.
The phase-angle at ω = ω2 is

|G(jω2)H(jω2)| = – 180º (3.24)
Hence, the  closeness of Nyquist plot to critical point (– 1 + j0), decides the relative stabil-

ity of the systems. The closer the Nyquist plot to the critical point (– 1 + j0) the system tends
towards instability.

Gain margin is a factor by which the gain of a stable system is allowed to increase before
the system reaches instability. Gain margin  is defined as the magnitude of reciprocal of the
open-loop transfer function evaluated at the frequency ω2 at which the phase angle is – 180º.

GM = 
ω ω2 2

1
| ( ) ( )|G j H j

(3.25)

where ω2 is the phase cross over frequency.
Phase margin of a stable system is the amount of additional phase lag required to bring

the system to point of instability. It is defined as
PM = [180 + |G(jω1)H(jω1)] (3.26)

where |G(jω1)H(jω1)| = 1 and ω1 is called the gain-crossover frequency.
For a stable system both GM and PM should be positive.
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Bode plot consists of two graphs in rectangular coordinates. These are (i) the magnitude
of G(jω)H(jω) in db versus log10ω, (ii) the phase angle of G(jω)H(jω) versus log10ω.

The general open-loop transfer function of a feedback control system may be represented
by

G(s)H(s) = 
+ + ω

+ + + ξω + ω

2
1 2

2 2

[(1 )(1 ) ...]
[(1 )(1 ) ...] ( 2 )

n
N

a b n n

k ST ST
s ST sT s s

(3.27)

Here the highest power of s in the numerator is lower than that of the denominator. Now
substituting s = jω, we get

G(jω)H(jω) = 
+ ω + ω ω

ω + ω + ω ω − ω ξ ω ω

2
1 2

2 2

[(1 )(1 ) ...]
( ) [(1 )(1 ) ...] ( 2 )

n
N

a b n n

k j T j T
j j T j T j

(3.28)

Hence, the  magnitude is

|G(jω)H(jω)| = 
+ ω + ω ω

ω + ω ω − ω + ξ ω ω

2
1 2

2 2

|1 ||1 |...
|( ) ||1 |...| 2 |

n
N

a n n

k j T j T
j j T j

(3.29)

and the phase is

|G(jω)H(jω)| = − − − − ξω ω
ω + ω − − ω ω − ω 

1 1 1 1
1 2 2 2

2
tan tan 90 tan ... tan

( )
n

a
n

T T N T

(3.30)

The magnitude can be represented in decibel form as

20 log10|G(jω)H(jω)| = 20 log10 k + 20 log10|1 + jωT1|

+ 20 log10|1 + jωT2| – 20 N log10|jω| – 20 log10|1

+ jωTa | …… 20 log 
ω − ω ξω ω+

ω ω

2 2

2 2

2n n

n n

(3.31)

Equation (3.31) shows that the frequency function of an open-loop transfer function
G(jω)H(jω) has factors as follows:

(a) Constant gain factor k

(b) Poles at origin due to factor 
ω N

1
( )j

 with N = 0, 1, 2, …

(c) Zeros on real axis due to (1 + jωT)

(d) Poles on real axis due to 
+ ω

1
(1 )j T

(3.32)

(e) Complex conjugate poles due to ω
ω − ω + ξω ω2 2( ) 2 )

n

n nj

Bode plots of continuous-time frequency response functions can be constructed by sum-
ming the magnitude and phase angle contributions of each pole and zero. The asymptotic ap-
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proximations of these plots are often sufficient. The asymptotic Bode plots for G(jω)H(jω) are
obtained by adding the graphs of each of the terms (a) to (e). For example, the Bode plot for gain
term k is obtained from the expressions

k|db = 20 log10 k
  |k = 0 (3.33)

Thus, the magnitude and phase angle for the term K is independent of the frequency.
Hence, the Bode plot for this term is a horizontal straight line, as shown in Fig. 3.2.
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Fig. 3.2

From the frequency response-function for a pole of order N at origin or 1

( )Njω
 , the Bode

plots are inclined straight lines. Here the magnitude in decibels (dB) = 20 log10 ω
1

( )Nj
= – 20

N log10ω and the phase-angle 
ω
1

( )Nj
 = – 90 N. The Bode plots are shown in Fig. 3.3.
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Similarly,  the Bode plots for terms (1 + jωT) and 1/(1 + jωT) are shown in Figs. 3.4 and 3.5.
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Note:
1. Exact plots are different from asymptotic plots. The two plots match each other at

lower and higher values of frequencies with respect to  the corner frequency ω = 1/T.
2. The initial slope of the Bode plot for type N system is – 20 N db/decade and intersec-

tion with x-axis occurs at ω = K1/N.
The Bode plot for the quadratic term

ω
ω − ω + ξ ω ω

2

2 2 2
n

n nj

can be  drawn from the expressions for magnitude in dB and phase angle.

|G(jω)H(jω)|dB = 20 log10 
ω

ω − ω + ξ ω ω

2

2 2 2
n

n nj

= 20 log10 
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(3.34)

Using the asymptotic approximations, when 
ω
ωn

 << 1, the terms 
ω
ω

2

2
n

 and 
ω
ωn

 can be

neglected in comparison with 1.

Hence 20 log10
ω

ω − ω + ξ ω ω

2

2 2 2( ) 2
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n nj
 = – 20 log10 1  = 0

and when
ω
ωn

 >> 1, 20 log10 
ω
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2

2 2 2( ) 2
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n nj

= – 20 log10 
ω
ω

2

2
n

 = – 40 log10 
ω
ωn

(3.35)

Hence,  the plot has a slope of – 40 db/decade. The Bode plot is shown in Fig. 3.6.
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The MATLAB command ‘‘bode’’ obtains the magnitudes and phase angles of the fre-
quency response of continuous – time, linear, time – invariant systems.

The MATLAB bode commands commonly used are:
Bode(num, den)
bode(num, den, W)
bode(A, B, C, D) (3.36)
bode(A, B, C, D, W)
bode(sys)

where w is the frequency vector.
MATLAB bode commands with left hand arguments commonly used are:

[mag, phase, w] = bode (num, den)
[mag, phase, w] = bode (num, den, w)
[mag, phase, w] = bode (A, B, C, D)
[mag, phase, w] = bode (A, B, C,D, w) (3.37)
[mag, phase, w] = bode (A, B, C, D, iu, w)
[mag, phase, w] = bode (sys)

The MATLAB commands given in Eq. (3.37) returns the frequency response of the sys-
tem in matrices mag, phase, and w. The plot is not drawn on the screen. The matrices mag,
phase provide the magnitudes and phase angles of frequency response of the system, computed
at the specified frequency points.

The magnitude may be converted into decibles using the MATLAB statement
magdB = 20 * log 10 (mag) (3.38)

In MATLAB , the following command
logspace  (d1, d2 ) (3.39)

or logspace(d1, d2, n). logspace(d1, d2) (3.40)
are used to specify the frequency range that will generate a vector of 50 points logarithmically
equally speed between decades 10d1  and 10d2

The MATLAB command
w = logspace (– 1, 2)  (3.41)

may be used to generate 50 points between 0.1 and 100 rad/sec.
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Similarly, the MATLAB command
logspace (d1, d2, n)                                                                                                                                  (3.42)

generates n points logarthimatically equally spaced between 10d1 and 10d2 where by the n points
include both the endpoints.
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Nyquist analysis is a frequency response method. It is basically a graphical procedure for
determining the absolute and relative stability of closed-loop control systems. Stability infor-
mation obtained directly from a graph of the open-loop frequency response function GH(ω).

It should be noted here that the Routh-Hurwitz stability method can only be used for
determining absolute stability and is applicable to systems whose characteristic equation is a
finite polynomial in s.

Nyquist method is also useful for obtaining information about transfer functions of sys-
tems from the experimental frequency response data. The Nyquist analysis can be used for
systems with time delays without the need for approximations and gives exact results about
both absolute and relative stability of the system.

3.7.1 Polar Plots
The polar plot is a plot of the magnitude G(jω) and its phase angle as the frequency is

taken over its full range from zero to infinity. Consider a continuous system transfer function
G(s) represented in the frequency domain as a sinusoidal transfer function. The resulting G(jω)
is a complex function of single variable ω. It may be plotted either from the magnitude and
phase obtained directly or by plotting the real and imaginary parts of G(jω) as ω varies, with the
polar values of magnitude and phase angle taken from the Cartesian plot. A positive phase
angle denotes a phase advance through the system while a negative value  a phase lag.

We can write the following equivalent forms:
Polar form   G(jω) = |G(jω)|| φ(ω)|
Euler form  G(jω) = |G(jω)|(cos φ(ω) + j sin φ(ω)) (3.43)

where |G(jω)| is the magnitude of the complex function G(jω), and φ(jω) is its phase angle, or
arg G(jω) |G(jω)| cos φ(ω) is the real part, and |G(jω)| sin φ(ω) is the imaginary part of G(jω).
Hence

Rectangular or complex form G(jω) = Re G(jω) + j ImG(jω) (3.44)
A polar plot of G(jω) is a plot of Im G(jω) versus ReG(jω) in the finite portion of the G(jω)-

plane for – ∞ < ω < ∞. The magnitude and phase angle of G(jω) are graphed with ω varying from
– ∞ to + ∞. At singular points of G(jω), that is, poles on the jω-axis, |G(jω)| → ∞. The polar plot
of the transfer function of a time invariant, linear system exhibits conjugate symmetry. Hence,
the plot of – ∞ < ω < 0 will be a mirror image about the horizontal axis of the plot for 0 ≤ ω < ∞.
Also, the polar plot for [G(jω) + a] is identical to the polar plot for G(jω) with the origin of
coordinates shifted to the point – a = – (Re a + j Im a) where a is any complex constant.

For sketching a polar-plot of an open-loop transfer function G(s),  the following criteria is
used:

(a) From the transfer function G(s), the frequency function G(jω) is first obtained by
letting
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G(jω) = 
+ ω + ω + ω
ω + ω + ω1

(1 )(1 ) ...... (1 )
( ) (1 ) ...... (1 )

a b m
N

n

K j T j T j T
j j T j T

(3.45)

From Eq. (7.29),  the magnitude and phase angle at ω → 0 is obtained.
(b) At higher frequencies, i.e., as ω → ∝ , the magnitude and phase angle are then

obtained.

3.7.2 Nyquist Plot
We have seen that the points in the s-plane are mapped into points of the G(s)-plane by

the function G. In polar-plots s-plane degenerates into a line and G(jω) is represented in a
G(jω)-plane with ω as a parameter.

In a more general sense, only a specific locus of points in the s-plane is mapped into the
G(s)-plane.

G(s) is plotted with s = (σ + jω) using two graphs. The first graph is a graph of jω versus
σ called the s-plane, the same set of coordinates as those used for plotting pole-zero maps. The
second graph is the imaginary part of G(s) versus real part of G(s) called the G(s)-plane.

The Nyquist stability plot is an extension of the polar plot. The locus of points in the s-
plane mapped into G(s)-plane in Nyquist plots is called Nyquist path. This is a closed contour in
s-plane, which completely encloses the entire right half of the s-plane. In order that the Nyquist
path should not pass through any poles of G(s), small semicircles along the imaginary axis or at
the origin of G(s) are required in the path if G(s) has poles on the jω-axis or at the origin.
Nyquist plot is a mapping of the entire Nyquist path into the P(s)=plane.

The Nyquist plot of a sinusoidal transfer function G(jω) is a plot of the magnitude of G(jω)
versus the phase angle of G(jω) on polar coordinates as ω varied from 0 to ∞. Therefore, the
polar plot is the locus of vector |G(jω)| |G(jω)| as ω varied from 0 to ∞.

It should be noted here that each point on the polar plot of G(jω) represents the terminal
point of a vector at a particular value of ω. The real and imaginary components are given by the
projections of G(jω) on the real and imaginary axes. Nyquist plot shows the frequency response
characteristics of a system over the full frequency range in a single plot.

On the other hand, the plot will not indicate the contributions of each individual factor of
the open-loop transfer function.

Nyquist plots are also used in the frequency – response representation of linear, time
invariant, continuous – time feedback control systems. Nyquist plots are polar plots.

The MATLAB command
nyquist (num, den) (3.46)

Draw the Nyquist plot of the transfer function

G(s) = 
num(s)
den(s)

(3.47)

where num and den contain the polynomial coefficients in descending powers of s. The other
MATLAB command uses for drawing Nyquist plots are:

nyquist (num, den, w)
nyquist (A, B, C, D)
nyquist (A, B, C, D, w)
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nyquist (A, B, C, D, iu, w) (3.48)
nyquist (sys)

where w is the frequency vector.
The MATLAB command involving the user – specified vector w in Eq. (3.32) computes

the frequency response at the specified frequency points.
The following MATLAB commands

[re, im, w] = nyquist (num, den)
[re, im, w] = nyquist (num, den, w)
[re, im, w] = nyquist (A, B, C, D)
[re, im, w] = nyquist (A, B, C, D, w) (3.49)
[re, im, w] = nyquist (A, B, C, D, iu, w)
[re, im, w] = nyquist (sys)

are used to obtain the frequency response of the system in the matrices Re, im, and w. The plot
is not drawn on the screen. The matrices Re and im  contain the real and imaginary parts of the
frequency response of the system, computed at the frequency points specified in the vector w.

��� �����
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Nichols chart analysis is a modification of the Nyquist and Bode methods. It is a fre-
quency response method. The Nichols chart is a useful technique for determining the stability
and the closed-loop frequency response of a feedback system. Nichols chart is basically a trans-
formation of the M- and N-circles on the polar plot into non-circular M and N counters on a db
magnitude versus phase angle plot in rectangular coordinates.

If the open-loop frequency response function of a continuous-time system is represented
by GH(ω), then GH(ω) is plotted on a Nichols chart is called a Nichols chart plot of GH(ω).

The Nichols chart has two advantages over the polar plot. They are:
(a) since |GH(ω)| is plotted on a logarithmic scale, a much wider range of magnitude can

be graphed
(b) the graph of GH(ω) is essentially a summation of the individual magnitude and phase

angle contributions of its poles and zeros.
The stability is obtained from a plot of the open-loop gain versus phase characteristics.

3.8.1 db Magnitude-Phase Angle Plots
The polar form of a continuous time open-loop frequency response function is

GH(ω) = |GH(ω)|∠ arg GH(ω) (3.50)
The db magnitude-phase angel plot of GH(ω) is a graph of |GH(ω)| in decibels versus

GH(ω) in degrees on rectangular coordinates with ω as a parameter. The db magnitude-phase
angle plot for a continuous-time system is constructed by finding 20 log10|GH(ω)| and arg
GH(ω) in degrees for a sufficient number of values ω or ωT and plotting them in rectangular
coordinates with log magnitude as the ordinate and the phase angle as the abscissa.

Nichols chart analysis is another frequency response method and is a modification of the
Nyquist and Bode plot methods. The Nichols chart is essentially a transformation of the M and
N circles on the polar plot into noncircular M and N contours on a db magnitude versus phase
angle plot in rectangular coordinates. If G(jω)H(jω) represents the open-loop frequency response
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function of either continuous time or discrete-time system, then G(jω)H(jω) is plotted on a Nichols
chart is known as Nichols chart plot of G(jω)H(jω). The relative stability of the closed-loop sys-
tem is easily obtained from this graph.

The chart consisting of the M and N loci in the log magnitude verses phase diagram is
called the Nichols chart. The G(jω) locus drawn on the Nichols chart gives both the gain charac-
teristics and phase characteristics of the closed loop transfer function at the same time. The
Nichols chart contains curves of constant closed loop magnitude and phase angle. The Nichols
chart is symmetric about the 180° axis. The M loci are centered about the critical point (0 dB,  – 180).
The Nichols chart is useful in determining the frequency response of the closed loop from that of
the open loop. The Nichols chart is produced by using the MATLAB command  nichols(num,
den). The command ngrid creates the dotted lines that allow reading closed – loop gain and
phase from the Nichols chart. In order to customize the axes of the Nichols chart, the MATLAB
command axis is used.
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 The MATLAB command
[Gm, pm, wcp, wcg] = margin (sys) (3.51)

can be used to obtain the gain margin, phase margin, phase crossover frequency, and gain
crossover frequency.

In Equation (3.51), Gm is the gain margin, pm is the phase margin, wcp is the phase –
crossover frequency, and wcg is the gain crossover frequency.

The following MATLAB command is commonly used for obtaining the resonant peak and
resonant frequency:

[mag, phase, w] = bode (num, den, w)
or

[mag, phase, w] = bode (sys, w)
[Mp, k] = max (mag) (3.52)
resonant peak = 20 * log 10 (Mp)
resonant frequency = w(k)

The following lines are used in MATLAB program to obtain bandwidth:
n = 1

 while 20 * log 10 (mag (n)) > – 3
n = n + 1
end (3.53)
bandwidth = w(n)

���� 
���	�����
�������	�	
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In this section, we consider two cases of transformation of system models.
1. Transformation of system model from transfer function to state space
2. Transformation of system model from state space to transfer function
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3.10.1 Transformation of System Model from Transfer Function to State Space
 The closed – loops transfer function can be written as

Y(s)
U(s)

 = 
numerator of polynomials

denominator of polynomials
 = num

den
(3.54)

The state-space representation is obtained by the MATLAB command
[A, B, C, D] = tf2ss (num, den) (3.55)

3.10.2 Transformation of System Model from State Space to Transfer Function
The transfer function from state – space equations is obtained by using the MATLAB

command:
[num, den] = ss2tf (A, B, C, D, iu) (3.56)

where iu corresponds to the system with more than one input. iu is either 1, 2, or 3, where 1
implies input u1, 2 implies input u2, and 3 implies input u3.

For system with only one input, the MATLAB command
[num , den] = ss2tf (A, B, C, D) (3.57)

or [num, den] = ss2tf (A, B, C, D, 1) (3.58)
may be used

���� ���� !��"#$%#&'��(�	)'*!&'��!("+! �"+�	*#*!�	,#-!

Let the control system defined in State Space be

�x  = Ax + Bu
y = Cx + Du (3.59)

where A = state matrix (nxn matrix)
B = control matrix (nxr matrix)
C = output matrix (mxn matrix)
D = output matrix (mxn matrix)
u = control vector (r – vector)
x = state vector (n – vector)
y = output vector (m – vector)

The MATLAB command bode[A, B, C, D] may be used to obtain the Bode diagram of
this system. In fact, the command bode[A, B, C, D] gives a series of Bode plots , one for each
input of the system, with the frequency range automatically determined.

If we use the scalar iu as an index into the inputs of the control system that specifies
which input is to be used for the Bode plot, Then the MATLAB command Bode [A, B, C, D iu]
produces the Bode plots from the input iu to all the outputs (y1, y2, ....., ym) of the system with
the frequency range automatically determined.

If the system has three inputs, then u = 
 
 
 
  

1

2

3

u

u

u
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For a system with only one input u, then the MATLAB command
Bode[A, B, C, D] (3.60)

or Bode [A, B, C, D, 1] can be used. (3.61)

���. �������	
��
�
	���� ��	�	
��������������	
�
��	����

Consider the system defined in state space given by Equation (3.39). Nyquist plots of the
system defined in Eq. (3.43) may be obtained by using the MATLAB command

nyquist (A, B, C, D) (3.62)
 The MATLAB command given by Eq. (3.62) produces a series of Nyquist plots one corre-

sponding to each input and output combination of the system, with the frequency range auto-
matically determined.

If we used the scalar iu as an index to the inputs of the control system that specifies
which input is to be used for the Nyquist plot, then the MATLAB command nyquist (A, B, C, D,
iu, w) produces Nyquist plots from the input to all the outputs (y1, y2, ....., ym) of the system with
the frequency range automatically determined .

The MATLAB command
nyquist ( A, B, C, D, iu, w) (3.63)

considers the user – supplied frequency vector w. The vector w specifies the frequency at which
the frequency response should be determined

� ���� �
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In this section, we present the transient—response analysis of systems in state – space
using MATLAB. Specifically, we present the step response, impulse, ramp response, and re-
sponses  to other forms of simple inputs.

3.13.1 Unit Step Response
For a control system defined in a state space form as in Eq. (3.59), the MATLAB com-

mand
step (A, B, C, D) (3.64)

will generate plots of unit step responses, with the time vector automatically determined pro-
vided t is not explicitly provided in the step commands.

The MATLAB command step (sys) may also be used to obtain the unit—step response of
a system.

The command
step (sys) (3.65)

can be used where the system is defined by
sys = tf (num, den) (3.66)

or
sys = ss (A, B, C, D) (3.67)

The following MATLAB step commands with left hand arguments are used then no plot
is shown on the screen.
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[y, x, t] = step [num, den, t]
[y, x, t] = step (A, B, C, D, iu) (3.68)
[y, x, t] = step (A, B, C, D, iu, t)

Hence , in order to obtain the response curves, plot commands should be used. The matri-
ces x, and y contain the state response of the system and the output respectively, computed at
the time points t . In Eq. (3.64), iu is a scalar index of the inputs of the system, which specifies
the input to be used for the response, and t is the user specified time. The step command in Eq.
(3.69) can be used to obtain a series of step response plots, one for each input and output combi-
nation of

�x  = Ax + Bu
y = Cx + Du (3.69)

when the system involves multiple inputs and multiple outputs.

3.13.2 Impulse Response
 The following MATLAB commands may be used to obtain the unit impulse response of a

control system:
impulse (num, den) (3.70)
impulse(A, B, C, D) (3.71)
[y, x, t] = impulse (num, den) (3.72)
[y, x, t] = impulse (num, den, t) (3.73)
[y, x, t] = impulse (A, B, C, D) (3.74)
[y, x, t] = impulse (A, B, C, D, iu) (3.75)
[y, x, t] = impulse (A, B, C, D, iu, t) (3.76)

The command in Eq. (3.70) impulse (num, den) shows the plots of the unit impulse re-
sponse on the monitor (screen). The command in Eq. (3.71) , impulse (A, B,C, D) produces a
series of unit  impulse – response plots one for each input and output combination of the system
defined in Eq. (3.59) with the time vector automatically obtained. The vector t in Eqns. (3.73)
and (3.76) is the user supplied time vector, which specifies the times at which the impulse
response is to be obtained. The scalar iu in Eqns. (3.71) and (3.72) is an index into the inputs of
the system and specifies which input is to be used for the impulse response. The matrices x and
y in Eqs.(3.72) to (3.76) contain the state responses of the system and the output respectively,
evaluated at the time points t.

3.13.3 Unit Ramp Response
 Consider the system described in state space as

�x  = Ax + Bu
 y = Cx + Du (3.77)

where u is the unit – ramp function.
When all the initial conditions are zeros, the unit ramp response is the integral of the

unit step response. Therefore, the unit ramp response is given by

z = ∫ 0

t
y dt (3.78)
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or   �z  = y = x1 (3.79)
Defining

z = x3 (3.80)
Equation (3.79) can be written as

 �x 3 = x1 (3.81)
Combining Eqns. (3.57) and (3.61) , we can write

�x  = AAx + BBu
 z = CCx + DDu (3.82)

The MATLAB command
[z, x, t] = step (AA, BB, CC, DD) (3.83)

can be used to obtain the unit – ramp response curve z(t).

3.13.4 Response to Arbitrary Input
The response to an arbitrary input can be obtained by using the following MATLAB

commands:
lsim (num, den, t) (3.84)
lsim (A, B, C, D, u, t) (3.85)
y = lsim (num, den, r, t) (3.86)
y = lsim (A, B, C, D, u, t) (3.87)

The MATLAB commands in Eqns. (3.80) to (3.83) will generate the response to input
time function r or u.
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Consider the system defined in state space by

�x  = Ax + Bu,   x(0) = x0 (3.88)
 y = cx + Du (3.89)

The MATLAB command
initial (A, B, C, D, [initial condition], t) (3.90)

may be used to provide the response to the initial condition.

EXAMPLE PROBLEMS AND SOLUTIONS

Example 3.1. Reduce the system shown in Fig. 3.1 to a single transfer function, T(s) =
C(s)/R(s) using MATLAB. The transfer functions are given as

G1(s) = 1
(s + 7)

G2(s) = 2
1

(s + 6s + 5)

G3(s) = 
1

(s + 8)
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G4(s) = 
1
s

G5(s) = 7
(s + 3)

G6(s) = 2
1

(s + 7s + 5)

G7(s) = 5
(s + 5)

G8(s) = 1
(s + 9)

G 1 (s ) G 3 ( s )

G 8 ( s )

G 4 ( s )

G 6 ( s )

G 7 ( s )

G 5 ( s )

G 2 ( s )
C (s )

+

–

+

+
+

+

+

+
–R (s )

Fig. 3.1

The transfer functions are given as:
G1 (s) = 1/(s + 7)

G2 (s) = 1/(s2 + 3s + 5)
G3 (s) = 1/(s + 8)

G4 (s) = 1/s
G5 (s) = 7/(s+3)

G6 (s) = 1/(s2 + 7s + 5)
G7 (s) = 5/(s + 5)

G8 (s) = 1/(s + 9)
Solution. % MATLAB Program

G1 = tf ( [0 0 1], [0 1 7]);
G2 = tf ( [0 0 1], [1 6 5]);
G3 = tf ( [0 0 1], [0 1 8]);
G4 = tf ( [0 0 1], [0 1 0]);
G5 = tf ( [0 0 7], [0 1 3]);
G6 = tf ( [0 0 1], [1 7 5]);
G7 = tf ( [0 0 5], [0 1 5]);
G8 = tf ( [0 0 1], [0 1 9]);
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G9 = tf ( [0 0 1], [0 0 1]);
T1 = append (G1, G2, G3, G4, G5, G6, G7, G8, G9);
Q = [ 1 – 2 – 5 9 ]

2 1 8 0
31 8 0
4 1 8 0
5 3 4 – 6
6 7 0 0
7 3 4 – 6
8 7 0 0];

Inputs = 9;
Outputs = 7;
Ts = connect (T1, Q, Inputs, Outputs);
T = Tf (Ts) computer response
Transfer function:

10 s^7 + 290 s^6 + 3350 s^5 + 1.98e004 s^4 + 6.369e004 s^3 + 1.089e005 s^2 + 8.895e004 s +
2.7e004 s^10 + 45 s^9 + 866 s^8 + 9305 s^7 + 6.116e004 s^6 + 2.533e005 s^5 + 6.57e005 s^4 +
1.027e006 s^3 + 8.909e005 s^2 + 3.626e005 s + 4.2e004.

Example 3.2. For each of the second order systems below, find ξ, ωn, Ts, Tp, Tr, % over-
shoot, and plot the step response using MATLAB.

(a) T(s) = 2
130

s + 15s + 130

(b) T(s) = 2
0.045

s + 0.025s + 0.045

(c) T(s) = 
+ × +

8

2 3 8

10
1.325 10 10s s

Solution.
(a) >> clf

>> numa = 130;
>> dena = [1 15 130];
>> Ta = tf(numa, dena)

Transfer function:
      130
----------------
s^2 + 15 s + 130

>> omegana = sqrt (dena(3))
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omegana =
   11.4018
>> zetaa = dena(2) / (2*omegana)
zetaa =
    0.6578
>> Tsa = 4/ (zetaa*omegana)
Tsa =
    0.5333
>> Tpa = pi/ (omegana*sqrt(1-zetaa^2))
Tpa =
    0.3658
>> Tra = (1.76*zetaa^3 – .417*zetaa^2 + 1.039*zetaa + 1)/omegana
Tra =
    0.1758
>> percenta = exp(–zetaa*pi/ sqrt(1–zetaa^2))*100
percenta =
    6.4335
>> subplot(221)
>> step(Ta)
>> title(‘(a)’)
>> ‘(b)’
ans =
(b) >> numb = .045;

>> denb = [1 .025 .045];
>> Tb = tf(numb,denb)

Transfer function:
        0.045
---------------------
s^2 + 0.025 s + 0.045

>> omeganb = sqrt(denb(3))
omeganb =
    0.2121
>> zetab = denb(2) / (2*omeganb)
zetab =
    0.0589
>> Tsb = 4/ (zetab*omeganb)
Tsb =
   320
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>> Tpb = pi/ (omeganb*sqrt(1–zetab^2))
Tpb =
   14.8354
>> Trb = (1.76*zetab^3 – .417*zetab^2 + 1.039*zetab + 1)/omeganb
Trb =
    4.9975
>> percentb= exp(– zetab*pi/ sqrt(1–zetab^2))*100
percentb =
   83.0737
>> subplot(222)
>> step(Tb)
>> title(‘(b)’)
>> ‘(c)’
ans =
(c) >> numc = 10E8;

>> denc = [1 1.325*10E3 10E8];
>> Tc = tf(numc, denc)

 Transfer function:
        1e009
---------------------
s^2 + 13250 s + 1e009
 >> omeganc = sqrt(denc(3))
omeganc =
  3.1623e+004
>> zetac = denc (2) / (2*omeganc)
zetac =
    0.2095
>> Tsc = 4/ (zetac*omeganc)
Tsc =
  6.0377e – 004
>> Tpc = pi/(omeganc*sqrt (1 – zetac^2))
Tpc =
  1.0160e – 004
>> Trc = (1.76*zetac^3 – .417*zetac^2 + 1.039*zetac + 1)/omeganc
Trc =
  3.8439e – 005
>> percentc = exp (– zetac*pi/sqrt (1 – zetac^2))*100
percentc =
   51.0123
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>> subplot (223)
>> step (Tc)
>> title (‘(c)’)
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Example 3.3. Determine the pole locations for the system shown below using MATLAB.

( )
( )

C s
R s

 = 
3 2

5 4 3 2

s 6s + 7s + 15
s + s 5s 9s + 11s 12

−
− − −

Solution.
>> %MATLAB Program

>> den = [1 1 – 5 – 9 11 – 12];
>> A = roots (den)
A =
  – 2.1586 + 1.2396i

  – 2.1586 – 1.2396i
   2.3339
   0.4917 + 0.7669i
   0.4917 – 0.7669i



MATLAB TUTORIAL 149

Example 3.4. Determine the pole locations for the unity feedback system shown below
using MATLAB.

G(s) = 
150

(s + 5)(s + 7)(s + 9)(s + 11)

Solution.
>> %MATLAB Program
>> numg = 150
numg =
   150
>> deng = poly ([– 5 – 7 – 9 – 11]);
>> ‘G(s)’
ans =
G(s)
>> G = tf (numg, deng)
Transfer function:
                 150
--------------------------------------
s^4 + 32 s^3 + 374 s^2 + 1888 s + 3465
>> ‘Poles of G(s)’
ans =
Poles of G(s)
>> pole (G)
ans =
  – 11.0000
   – 9.0000
   – 7.0000
   – 5.0000
>> ‘T(s)’
ans =
T(s)
>> T = feedback (G, 1)
Transfer function:
                 150
--------------------------------------
s^4 + 32 s^3 + 374 s^2 + 1888 s + 3615
>> pole (T)
ans =
 – 10.9673 + 1.9506i
 – 10.9673 – 1.9506i
  – 5.0327 + 1.9506i

  – 5.0327 – 1.9506i
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Example 3.5. A plant to be controlled is described by a transfer function

G(s) = 
2

s + 5
s + 7s + 25

Obtain the root locus plot using MATLAB.
Solution.
>> %MATLAB Program
>> clf
>> num = [1 5];
>> den = [1 7  25];
>> rlocus(num, den);
Computer response is shown in Fig. E 3.5
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Example 3.6. For the unity feedback system shown in Fig. E 3.6, G(s) is given as

G(s)
C(s)R(s)

Fig. E 3.6.

G(s) = 
230(s 5s + 3)

(s + 1)(s + 2)(s + 4)(s + 5)
−

Determine the closed-loop step response using MATLAB.

Solution.
>> %MATLAB Program

>> numg = 30*[1 – 5 3];
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>> deng = poly([– 1 – 2 – 4 – 5]);
>> G = tf(numg,deng);
>> T = feedback(G,1)
>> step(T)
Computer response:
Transfer function:
       30 s^2 – 150 s + 90
----------------------------------
s^4 + 12 s^3 + 79 s^2 - 72 s + 130
Fig. E3.6(a) shows the response
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Simulation shows over 30% overshoot and non minimum-phase behavior.  Hence the
second-order approximation is not valid.

Example 3.7. Determine the accuracy of the second-order approximation using MATLAB
to simulate the unity feedback system shown in Fig. E 3.7 where

G(s) = 
2

2

15(s + 3s + 7)

(s + 3s + 7)(s + 1)(s + 3)

G(s)
C(s)R(s)

Fig. E 3.7.

Solution.
>> %MATLAB Program

>> numg = 15*[1 3 7];
>> deng = conv([1 3 7],poly([– 1 – 3]));
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>> G = tf(numg,deng);
>> T = feedback(G, 1);
>> step(T)
Computer response [see Fig E 3.7(a)].
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Example 3.8. For the unity feedback system shown in Fig. E 3.8 with

G(s) = 
K(s + 1)

s(s + 1)(s + 5)(s + 6)

determine the range of K for stability using MATLAB.

G(s)
R(s)

Fig. E 3.8

Solution.
>> %MATLAB Program

>> K = [0:0.2:200];
>> for i = 1: length (K);
>> deng = poly ([0 –1 – 5 – 6]);
>> dent = deng + [0 0 0 K (i) K (i)];
>> R = roots (dent);
>> A = real(R);
>> B = max (A);
>> if B > 0
>> R
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>> K = K (i)
>> break
>> end
>> end
Computer response:
R =
 – 10.0000
 – 0.5000 + 4.4441i
 – 0.5000 – 4.4441i

 – 1.0000
A =
– 10.0000
– 0.5000
– 0.5000
– 1.0000
B =
   – 0.5000
Example 3.9. Write a program in MATLAB to obtain the Nyquist and Nichols plots for

the following transfer function for k = 30.

G(s) = –
–

k(s + 1)(s + 3 + 7i)(s + 3 7i)
(s + 1)(s + 3)(s + 3 + 7i)(s + 3 7i)

Solution.
>> %MATLAB Program
>> %Simple Nyquist and Nichols plots
>> clf
>> z = [– 1 – 3 + 7*i – 3 – 7*i];
>> p = [– 1 – 3 – 5 – 3 + 7*i – 3 – 7*i];
>> k = 30;
>> [num, den] = zp2tf (z’, p’, k);
>> subplot (211), nyquist (num, den)
>> subplot (212), Nichols (num, den)
>> ngrid
>> axis ([50 360 – 40 30])
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Computer response:  The Nyquist and Nichols plots are shown in Fig. E 3.9.
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Example 3.10. A PID controller is given by

 Gc(s) = 29.125
2(s + 0.57)

s

Draw a Bode diagram of the controller using MATLAB.
Solution.

 Gc(s) = 
229.125( 1.14 0.3249)s s

s
+ +

= 
229.125 33.2025 9.4627s s

s
+ +

The following MATALB program produces the Bode diagram
>> %MATLAB Program
>> %Bode diagram
>> num= [29.125 33.2025 9.4627];
>> den= [0 1 0];
>> bode (num, den)
>> title (‘Bode diagram of G(s)’)
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Example 3.11.  For the closed-loop system defined by

( )
( )

C s
R s

 = 
+ ξ +2

1
s 2 s 1

(a) plot the unit-step response curves c (t) for ξ =0, 0.1, 0.2, 0.4, 0.5, 0.6, 0.8, and1.0. ωn is
normalized to 1.

(b) plot a three dimensional plot of (a).
Solution.
>> %Two-dimensional plot and three-dimensional plot of unit-step
>> %response curves for the standard second-order system with wn = 1
>> %and zeta = 0, 0.1, 0.2, 0.4, 0.5, 0.6, 0.8, and 1.0
>> t = 0 : 0.2 : 10;
>> zeta = [0 0.1 0.2 0.4 0.5 0.6 0.8 1.0];
>> for n = 1:8;
>> num = [0 0 1];
>> den = [1 2*zeta (n) 1];
>> [y (1 : 51, n), x, t] = step (num, den, t);
>> end
>> %Two-dimensional diagram with the command plot (t, y)
>> plot (t, y)
>> grid
>> title (‘Plot of unit-step response curves’)
>> xlabel (‘t Sec’)
>> ylabel (‘Response’)
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>> text (4.1, 1.86, ‘\zeta = 0’)
>> text (3.0, 1.7, ‘0.1’)
>> text (3.0, 1.5, ‘0.2’)
>> text (3.0, 1.22, ‘0.4’)
>> text (2.9, 1.1, ‘0.5’)
>> text (4.0, 1.08, ‘0.6’)
>> text (3.0, 0.9, ‘0.8’)
>> text (4.0, 0.9, ‘1.0’)
>> %For three dimensional plot, we use the command mesh (t, eta, y’)
>> mesh (t, eta, y’)
>> title (‘Three-dimensional plot of unit-step response curves’)
>> xlabel (‘t Sec’)
>> ylabel (‘\zeta’)
>> zlabel (‘Response’)
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Example 3.12. A closed-loop control system is defined by,

( )
( )

C s
R s

 = 
2

2 s
s + 2 s + 1

ζ
ζ

where ζ is the damping ratio. For ζ = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0 using
MATLAB. Plot

(a) a two-dimensional diagram of unit-impulse response curves
(b) a three-dimensional plot of the response curves.

Solution. A MATLAB program that produces a two-dimensional diagram of unit-im-
pulse response curves and a three-dimensional plot of the response curves is given below:

>> %To plot a two-dimensional diagram

>> t = 0:0.2:10;
>> zeta = [0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0];
>> for n = 1:10;
>> num = [0 2*zeta (n) 1];
>> den= [1 2*zeta (n) 1];
>> [y (1:51, n), x, t] = impulse (num, den, t);
>> end
>> plot (t, y)
>> grid
>> title (‘Plot of unit-impulse response curves’)
>> xlabel (‘t Sec’)
>> ylabel (‘Response’)
>> text (2.0, 0.85, ‘0.1’)
>> text (1.5, 0.75, ‘0.2’)
>> text (1.5, 0.6, ‘0.3’)
>> text (1.5, 0.5, ‘0.4’)
>> text (1.5, 0.38, ‘0.5’)
>> text (1.5, 0.25, ‘0.6’)
>> text (1.7, 0.12, ‘0.7’)
>> text (2.0, – 0.1, ‘0.8’)
>> text (1.5, 0.0, ‘0.9’)
>> text (.5, 1.5, ‘1.0’)
>> %Three-dimensional plot
>> mesh (‘t, eta, y’)
>> title (‘Three-dimensional plot’)
>> xlabel (‘t Sec’)
>> ylabel (‘\zeta’)
>> zlabel (‘Response’)
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The two-dimensional diagram and three-dimensional diagram produced by this MATLAB
program are shown in Figs. E 3.12 (a) and (b) respectively.
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Example 3.13. For the systems given below write a program in MATLAB that will use an
open-loop transfer function G(s):

G(s) = 
50(s + 1)

s(s + 3)(s + 5)

G(s) = 
25( 1)( 7)

( 2)( 4)( 8)
s s

s s s s
+ +

+ + +

(a) Obtain a Bode plot

(b) Estimate the percent overshoot, settling time, and peak time
(b) Obtain the closed-loop step response.
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Solution. (a)
>> %MATLAB Program
>> G = zpk ([– 1], [0 – 3 – 5], 50)
>> G = tf (G)
>> bode (G)
>> title (‘System 1’)
>> %title (‘System 1’)
>> pause
>> %Find phase margin
>> [Gm, Pm, Wcg, Wcp] = margin (G);
>> w = 1:.01:20;
>> [M, P, w] =bode (G, w);
>> %Find bandwidth
>> for k = 1:1: length (M);
>> if 20*log10 (M (k)) +7<=0;
>> ‘Mag’
>> 20*log10 (M (k))
>> ‘BW’
>> wBW = w(k)
>> break
>> end
>> end
>> %Find damping ratio, percent overshoot, settling time, and peak time
>> for z = 0:.01:10
>> Pt = atan (2*z/ (sqrt (– 2*z^2 + sqrt (1 + 4*z^4))))*(180/pi);
>> if (Pm – Pt) <= 0
>> z;
>> Po = exp (– z*pi/sqrt (1 – z^2));
>> Ts = (4/ (wBW*z))*sqrt ((1 – 2*z^2) + sqrt (4*z^4 – 4*z^2 + 2));
>> Tp = (pi/ (wBW*sqrt (1 – z^2)))*sqrt ((1 – 2*z^2) + sqrt (4*z^4 – 4*z^2 + 2));
>> fprintf (‘Bandwidth = %g’, wBW)
>> fprintf (‘Phase margin = %g’, Pm)
>> fprintf (‘, Damping ratio = %g’, z)
>> fprintf (‘, Percent overshoot = %g’, Po*100)
>> fprintf (‘, Settling time = %g’, Ts)
>> fprintf (‘, Peak time= %g’, Tp)
>> break
>> end
>> end
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>> T = feedback (G, 1);
>> step (T)
>> title (‘Step response system 1’)
>>%title (‘Step response system 1’)
Computer response:
Zero/pole/gain:
  50 (s + 1)
-------------
s (s + 3) (s + 5)
Transfer function:
    50 s + 50
------------------
s^3 + 8 s^2 + 15 s
The Bode plot is shown in Fig. E 3.13(a)
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ans =
Mag
ans =
   – 3.0032
ans =
BW
wBW =
    9.7900
Bandwidth = 9.79Phase margin = 53.892, Damping ratio = 0.59, Percent overshoot =

10.0693, Settling time = 0.804303, Peak time = 0.461606
The step response is shown in Fig. E 3.13(b)
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(b) Likewise, for this problem
>> G = zpk ([– 1 – 7], [0 – 2 – 4 – 8], 25)
>> G = tf (G)
The following Bode plot and step response are obtained [see Figs. E 3.13(c) and (d).
Zero/pole/gain:
    25 (s + 1) (s + 7)
-----------------------------
s (s + 2) (s + 4) (s + 8)
Transfer function:
    25 s^2 + 200 s + 175
----------------------------
s^4 + 14 s^3 + 56 s^2 + 64 s
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ans =
Mag
ans =
   – 7.0110
ans =
BW
wBW =
    6.5500
Bandwidth = 6.55Phase margin = 63.1105, Damping ratio = 0.67, Percent overshoot =

5.86969, Settling time = 0.959175, Peak time = 0.679904
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Example 3.14. For a unit feedback system with the forward-path transfer function

G(s) = 
K

s(s + 5)(s + 12)

and a delay of 0.5 second, estimate the percent overshoot for K = 40 using a second-order ap-
proximation. Model the delay using MATLAB function pade (T, n). Determine the unit step re-
sponse and check the second-order approximation assumption made.

Solution.
>> %MATLAB Program
>> %Enter G(s)
>> numg1 = 1;
>> deng1 = poly ([0 – 5 – 12]);
 >> ‘G1(s)’
>> G1 = tf (numg1, deng1)
>> [numg2, deng2] = pade (0.5, 5);
>> ‘G2(s)’
>> G2 = tf (numg2, deng2)
>> ‘G(s) = G1(s) G2(s)’
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>> G = G1*G2
>> %Enter K
>> K = input (‘Type gain, K’);
>> T = feedback (K*G, 1);
>> step (T)
>> title ([‘Step response for K =’, num2str (K)])
Output of this program is as follows:
ans =
G1(s)
Transfer function:
         1
--------------------------
s^3 + 17 s^2 + 60 s

ans =
G2(s)
Transfer function:
– s^5 + 60 s^4 – 1680 s^3 + 2.688e004 s^2 – 2.419e005 s + 9.677e005
---------------------------------------------------------------------------------------------
s^5 + 60 s^4 + 1680 s^3 + 2.688e004 s^2 + 2.419e005 s + 9.677e005
ans =
G(s) = G1(s) G2(s)
Transfer function:
       – s^5 + 60 s^4 – 1680 s^3 + 2.688e004 s^2 – 2.419e005 s + 9.677e005
---------------------------------------------------------------------------------------------------
s^8 + 77 s^7 + 2760 s^6 + 5.904e004 s^5 + 7.997e005 s^4 + 6.693e006 s^3
                                                   + 3.097e007 s^2 + 5.806e007 s
Type Gain, K 40
The following Fig. E 3.14 is obtained.
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Example 3.15. Write a program in MATLAB to obtain a Bode plot for the transfer
function

(a) G(s) = 
15

s(s + 3)(0.7s + 5)

(b)  G(s) = 
3 2

4 3 2

(7s + 15s + 7s + 80)

(s + 8s + 12s + 70s + 110)

Solution. (a)
>> %MATLAB Program

>> %Bode plot generation
>> clf
>> num = 15;
>> den = conv([1 0], conv([1 3],[0.7 5]));
>> bode(num, den)
Computer response: The Bode plot is shown in Fig. E 3.15
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Solution.
>> %MATLAB Program
>> %Bode plot
>> clf
>> num=[0 7 15 7 80];
>> den=[1 8 12 70 110];
>> bode(num,den)
Computer response: The Bode plot is shown in Fig. E 3.15(b)
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Example 3.16. Write a program in MATLAB for a unity-feedback system with

G(s) = 
2 2

K(s + 7)
(s + 3s + 52)(s + 2s + 35)

(a) plot the Nyquist diagram

(b) Display the real-axis crossing value and frequency.
Solution.
>> %MATLAB Program
>> numg = [1 7]
>> deng = conv ([1 3 52], [1 2 35]);
>> G = tf (numg, deng)
>> ‘G(s)’
>> Gap = zpk (G)
>> inquest (G)
>> axis ([– 3e – 3, 4e – 3, – 5e – 3, 5e – 3])
>> w = 0:0.1:100;
>> [re, im] = nyquis t (G, w);
>> for i =1:1: length (w)
>> M(i) = abs (re (i) + j*im (i));
>> A (i) = atan2 (im (i), re (i))*(180/pi);
>> if 180 – abs (A (i)) <= 1;
>> re (i);
>> im (i);
>> K = 1/abs (re (i));
>> fprintf (‘\nw = %g’, w(i))
>> fprintf (‘, Re = %g’, re (i))
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>> fprintf (‘, Im = %g’, im (i))
>> fprintf (‘, M = %g’, M (i))
>> fprintf (‘, K = %g’, K)
>> Gm = 20*log10 (1/M (i));
>> fprintf (‘, Gm = &G’, Gm)
>> break
>> end
>> end
Computer response:
numg =
1 7
Transfer function:
               s + 7
------------------------------------------------
s^4 + 5 s^3 + 93 s^2 + 209 s + 1820
ans =
G(s)
Zero/pole/gain:
             (s + 7)
-------------------------------
(s^2 + 2s + 35) (s^2 + 3s + 52)
The Nyquist plot is shown in Fig. E 3.16.
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Example 3.17. Write a program in MATLAB for the unity feedback system with

G(s) = 
K

[s(s + 3)(s + 12)]
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so that the value of gain K can be input.  Display the Bode plots of a system for the input value of
K. Determine and display the gain and phase margin for the input value of K.

Solution.
>> %Enter G(s)

>> numg = 1;
>> deng = poly ([0 – 3 – 12]);
>> ‘G(s)’
>> G = tf (numg, deng)
>> w = 0.01:0.1:100;
>> %Enter K
>> K = input (‘Type gain, K’);
>> bode (K*G, w)
>> pause
>> [M, P] = bode (K*G, w);
>> %Calculate gain margin
>> for i = 1:1: length (P);
>> if P (i) <= – 180;
>> fprintf (‘\nGain K = %g’, K)
>> fprintf (‘, Frequency (180 deg) = %g’, w(i))
>> fprintf (‘, Magnitude = %g’, M (i))
>> fprintf (‘, Magnitude(dB) = %g’,20*log10(M(i)))
>> fprintf(‘, Phase = %g’,P(i))
>> Gm = 20*log10(1/M(i));
>> fprintf(‘, Gain margin(dB) = %g’,Gm)
>> break
>> end
>> end
>> %Calculate phase margin
>> for i = 1:1:length(M);
>> if M(i)< = 1;
>> fprintf(‘\nGain K = %g’, K)
>> fprintf(‘, Frequency(0 dB) = %g’, w(i))
>> fprintf(‘, Magnitude=%g’, M(i))
>> fprintf(‘, Magnitude(dB) = %g’, 20*log10(M(i)))
>> fprintf(‘, Phase = %g’,P(i))
>> Pm = 180 + P(i) ;
>> fprintf(‘, Phase margin(dB) = %g’, Pm)
>> break
>> end
>> end
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>> ‘Alternate program using MATLAB margin function:’
>> clear
>> clf
>> %Bode plot and find points
>> %Enter G(s)
>> numg = 1;
>> deng = poly([0 – 3 – 12]);
>> ‘G(s)’
>> G = tf(numg, deng)
>> w = 0.01:0.1:100;
>> %Enter K
>> K = input(‘Type gain, K ’);
>> bode(K*G, w)
>> [Gm, Pm, Wcp, Wcg] = margin(K*G)
>> ‘Gm(dB)’
>> 20*log10(Gm)
Computer response:
ans =
G(s)
Transfer function:
         1
--------------------------
s^3 + 15 s^2 + 36 s
Type gain, K 40
The Bode plot is shown in Fig. E 3.17(a).
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Gain K = 40, Frequency(180 deg) = 6.01, Magnitude = 0.0738277, Magnitude(dB) = – 22.6356,
Phase = – 180.076, Gain margin(dB) = 22.6356
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Gain K = 40, Frequency(0 dB) = 1.11, Magnitude = 0.93481, Magnitude(dB) = – 0.585534,
Phase = – 115.589, Phase margin(dB) = 64.4107

Alternate program using MATLAB margin function:
ans =
G(s)
Transfer function:
         1
-------------------------
s^3 + 15 s^2 + 36 s
Type gain, K  40
Gm =
   13.5000
Pm =
   65.8119
Wcp =
     6
Wcg =
    1.0453
ans =
Gm(dB)
ans =
   22.6067
The Bode plot is shown in Fig. E 3.17(b)
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Example 3.18. Write a program in MATLAB for the system shown below so that the value
of K can be input (K = 40).

+= ( 5)( )
( ) ( )2

K sC s
R s s s + 3s + 15
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(a) Display the closed-loop magnitude and phase frequency response for unity feedback
system with an open-loop transfer function, KG(s).

(b) Determine and display the peak magnitude, frequency of the peak magnitude, and
bandwidth for the closed-loop frequency response for the input value of K.

Solution.
>> %MATLAB Program
>> %Enter G(s)
>> numg = [1 5];
>> deng = [1 3 15 0];
>> ‘G(s)’
>> G = tf(numg, deng)
>> %Enter K
>> K = input(‘Type gain, K’);
>> ‘T(s)’
>> T = feedback(K*G,1)
>> bode(T)
>> title(‘Closed-loop frequency response’)
>> [M, P, w] = bode(T);
>> [Mp i] = max(M);
>> Mp
>> MpdB = 20*log10(Mp)
>> wp = w(i)
>> for i = 1:1:length(M);
>> if M(i)<= 0.707;
>> fprintf(‘Bandwidth = %g’, w(i))
>> break
>> end
>> end
Computer response:
ans =
G(s)
Transfer function:
      s + 5
------------------------
s^3 + 3 s^2 + 15 s
Type gain, K 40
ans =
T(s)
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Transfer function:
       40 s + 200
---------------------------------
s^3 + 3 s^2 + 55 s + 200
Mp =
   11.1162
MpdB =
   20.9192
wp =
    7.5295
Bandwidth = 10.8036
The Bode plot is shown in Fig. E 3.18.
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Example 3.19. Determine the unit-ramp response of the following system using MATLAB
and lsim command.

2
C(s) 1

=
R(s) 3s + 2s + 1

Solution.
>> %MATLAB Program
>> %Unit-ramp response
>> num = [0 0 1];
>> den = [3 2 1];
>> t = 0:0.1:10;
>> r = t;
>> y = lsim(num, den, r, t);
>> plot(t, r, ‘–’, t, y, ‘o’)
>> grid
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>> title(‘Unit-ramp response’)
>> xlabel(‘t Sec’)
>> ylabel(‘Unit-ramp input and output’)
>> text(1.0, 4.0, ‘Unit-ramp input’)
>> text(5.0, 2.0, ‘Output’)
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Fig. E 3.19 Unit-ramp response.

Example 3.20. A higher-order system is defined by

2

4 3 2

7s + 16s + 10C(s)
=

R(s) s + 5s + 11s + 16s + 10

(a) plot the unit-step response curve of the system using MATLAB
(b) obtain the rise time, peak time, maximum overshoot, and settling time using MATLAB.

Solution.
>> %Unit-step response curve

>> num = [0 0 7 16 10];
>> den = [1 5 11 16 10];
>> t = 0:0.02:20;
>> [y, x, t] = step(num, den, t);
>> plot(t, y)
>> grid
>> title(‘Unit-step response’)
>> xlabel(‘t Sec’)
>> ylabel(‘Output y(t)’)
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>> %Response to rise from 10% to 90% of its final value
>> r1 = 1; while y(r1) < 0.1, r1 = r1 + 1; end
>> r2 = 1; while y(r2) < 0.9, r2 = r2 + 1; end
>> rise_time = (r2 – r1)*0.02
rise_time =
    0.5400
>> [ymax,tp] = max(y);
>> peak_time = (tp – 1)*0.02
peak_time =
    1.5200
>> max_overshoot = ymax – 1
max_overshoot =
    0.5397
>> s = 1001; while y(s) > 0.98 & y(s) < 1.02; s = s – 1; end
>> settling_time = (s – 1)*0.02
settling_time =
    6.0200
Example 3.21. Obtain the unit-ramp response of the following closed-loop control system

whose closed-loop transfer function is given by

 
( )
( )

C s
R s

 = 3 2 8s + 12

s + 12
s + 5s +

Determine also the response of the system when the input is given by
r = e–0.7t.
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Solution.
>> %Unit-ramp response-lsim command
>> num = [0 0 1 12];
>> den = [1 5 8 12];
>> t = 0:0.1:10;
>> r = t;
>> y = lsim(num, den, r, t);
>> plot(t, r, ‘–’, t, y, ‘o’)
>> grid
>> title(‘Unit-ramp response’)
>> xlabel(‘t Sec’)
>> ylabel(‘Output’)
>> text(3.0, 6.5, ‘Unit-ramp input’)
>> text(6.2, 4.5, ‘Output’)
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Fig. E 3.21(a) Unit-ramp response curve.

>> %Input r1 = exp(– 0.7t)
>> num = [0 0 1 12];
>> den = [1 5 8 12];
>> t = 0:0.1:12;
>> r1 = exp(– 0.7*t);
>> y1 = lsim(num, den, r1, t);
>> plot(t, r1, ‘–’, t, y1, ‘o’)
>> grid
>> title(‘Response to input r1 = exp(– 0.7t)’)
>> xlabel(‘t Sec’)
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>> ylabel(‘Input and output’)
>> text(0.5, 0.9, ‘Input r1 = exp(– 0.7t)’)
>> text(6.3, 0.1, ‘Output’)
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Fig. E 3.21(b) Response curve for input r = e–0.7t.

Example 3.22. Obtain the response of the closed-loop system using MATLAB.  The closed-
loop system is defined by

( )
( )

C s
R s

 = 2

7
7s s+ +

The input r(t) is a step input of magnitude 3 plus unit-ramp input, r(t) = 3 + t.
Solution.
>> %MATLAB Program
>> num = [0 0 7];
>> den = [1 1 7];
>> t = 0:0.05:10;
>> r = 3 + t;
>> c = lsim(num, den, r, t);
>> plot(t, r, ‘–’, t, c, ‘o’)
>> grid
>> title(‘Response to input r(t) = 3 + t’)
>> xlabel(‘t Sec’)
>> ylabel(‘Output c(t) and input r(t) = 3 + t’)
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Fig. E 3.22 Response to input r(t) = 3 + t.

Example 3.23. Plot the root-locus diagram using MATLAB for a system whose open-loop
transfer function G(s) H(s) is given by

G(s)H(s) = 2 2
K(s + 3)

(s + 3s + 4)(s + 2s + 7)

Solution.

G(s)H(s) = 2 2

( 3)
( 3 4)( 2 7)

K s
s s s s

+
+ + + +

= 
+

+ + + +4 3 2

( 3)
( 5 17 29 28)

K s
s s s s

>> %MATLAB Program
>> num = [0 0 0 1 3];
>> den = [1 5 17 29 28];
>> K1 = 0:0.1:2;
>> K2 = 2:0.02:2.5;
>> K3 = 2.5:0.5:10;
>> K4 = 10:1:50;
>> K5 = 50:5:800;
>> K = [K1 K2 K3 K4 K5];



MATLAB TUTORIAL 177

>> r = rlocus(num, den, K);
>> plot(r, ‘o’)
>> v = [– 10 5 – 8 8]; axis(v)
>> grid
>> title(‘Root – locus plot of G(s)H(s)’)
>> xlabel(‘Real axis’)
>> ylabel(‘Imaginary axis’)
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Fig. E 3.23 Root-locus diagram.

Example 3.24. A unity-feedback control system is defined by the following feedforward
transfer function

G(s) = 2
K

s(s + 5s + 9)

(a) determine the location of the closed-loop poles, if the value of gain is equal to 3
(b) plot the root loci for the system using MATLAB.

Solution.
>> %MATLAB Program to find the closed-loop poles

>> p = [1 5 9 3];
>> roots(p)
ans =
  – 2.2874 + 1.3500i

  – 2.2874 – 1.3500i
  – 0.4253
>> %MATLAB Program to plot the root-loci
>> num = [0 0 0 1];
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>> den = [1 5 9 0];
>> rlocus(num, den);
>> axis(‘square’)
>> grid
>> title(‘Root-locus plot of G(s)’)
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Fig. E 3.24 Root-locus plot of G(s).

Example 3.25. The open-loop transfer function of a unity-feedback control system is given
by

G(s) = 3 2
1

s + 0.3s + 5s + 1

(a) draw a Nyquist plot of G(s) using MATLAB

(b) determine the stability of the system.
Solution.
>> % Open-loop poles
>> p = [1 0.3 5 1];
>> roots(p)
ans =
  – 0.0496 + 2.2311i
  – 0.0496 – 2.2311i

  – 0.2008
>> % Nyquist plot

>> num = [0 0 0 1];
>> den = [1 0.3 5 1];
>> nyquist(num,den)
>> v = [– 3 3 – 2 2]; axis(v); axis(‘square’)
>> grid
>> title(‘Nyquist plot of G(s)’)
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Fig. E 3.25 Nyquist plot of G(s).

There are two open-loop poles in the right half s plane and no encirclement of the critical
point, the closed-loop system is unstable.

Example 3.26. The open-loop transfer function of a unity-feedback control system is given
by

G(s) = 
K(s + 3)

s(s + 1)(s + 7)

Plot the Nyquist diagram of G(s) for K = 1, 10, and 100 using MATLAB.
Solution.

G(s) = ( 3)
( 1)( 7)

K s
s s s

+
+ +

 = 3 2

( 3)
8 7

K s
s s s

+
+ +

>> % MATLAB Program

>> num = [1 3];
>> den = [1 8 7 0];
>> w = 0.1:0.1:100;
>> [re1, im1, w] = nyquist(num, den, w);
>> [re2, im2, w] = nyquist(10*num, den, w);
>> [re3,im3,w] = nyquist(100*num, den, w);
>> plot(re1, im1, re2, im2, re3, im3)
>> v = [– 3 3 – 3 3]; axis(v)
>> grid
>> title(‘Nyquist diagrams’)
>> xlabel(‘Real axis’)
>> ylabel(‘Imaginary axis’)
>> text(– 0.2, – 2, ‘K = 1’)
>> text(– 1.5, – 2.0, ‘K = 10’)
>> text(– 2, – 1.5, ‘K = 100’)
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Fig. E 3.26 Nyquist Diagrams.

Example 3.27. The open-loop transfer function of a negative feedback system is given by

G(s) = 5
s(s + 1)(s + 3)

Plot the Nyquist diagram for

(a) G(s) using MATLAB
(b) same open-loop transfer function use G(s) of a positive-feedback system using MATLAB
Solution.

G(s) = 
+ +

5
( 1)( 3)s s s

 = 3 2

5
4 3s s s+ +

>> %Nyquist diagrams of G(s) and – G(s)

>> num1 = [0 0 0 5];
>> den1 = [1 4 3 0];
>> num2 = [0 0 0 – 5];
>> den2 = [1 4 3 0];
>> nyquist(num1,den1)
>> hold
Current plot held
>> nyquist(num2, den2)
>> v = [– 5 5 – 5 5]; axis(v)
>> grid
>> text(– 3, – 1.8, ‘G(s)’)
>> text(1.9, – 2, ‘– G(s)’)
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Fig. E 3.27 Nyquist diagrams.

Example 3.28. For the system shown in Fig. E 3.28, design a compensator such that the

dominant closed-loop poles are located at s = – 2 ± j 3 . Plot the unit-step response curve of the
designed system using MATLAB.

)1s5.0(s

7

+Gc(s)
+

–

Fig. E 3.28  Control system.

Solution. From Fig. E 3.28(a), for the closed-loop pole is to be located at s = – 2 + j 3 ,
the sum of the angle contributions of the open-loop poles (at s = 0, and s = – 2) is given by – 120º

– 90º = – 210º. For the closed-loop pole at s = – 2 + j 3  we need to add 30º to the open-loop
transfer function. In other words, the angle deficiency of the given open-loop transfer function

at the desired closed-loop pole s = – 2 + j 3   is given by

180º – 120º – 90º = – 30º
The compensator must contribute 30º (lead compensator). The simplest form of a lead

compensator is

Gc(s) = K 
s a
s b

+
+
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(a) Open-loop poles and a desired (b) Compensator pole-zero configuration

closed-loop pole. to contribute phase lead angle of 30º.

Fig. E 3.28(a) and (b).

If we select the zero of the lead compensator at s = – 2, then the pole of the compensator
must be located at s = – 4 in order to have a phase lead angle of 30º (see Fig. E 3.28(b)).

Hence Gc(s) = K
2
4

s +
s +

The gain K is obtained from  the condition

2 3

2 7
4 (0.5 1) s j

s
K

s s s = − +

+
+ +

= 1

or K = 
2 3

( 4)
14 s j

s s

= − +

+
 = 0.5

or Gc(s) = 0.5
2
4

s
s

+
+

The open-loop transfer function of the compensated system is given by

Gc(s) . 7
(0.5 1)s s +

 = 0.5 
2
4

s
s

+
+

 14
( 2)s s +

 = 
7

( 4)s s +

The  closed-loop transfer function of the original system is

 
( )
( )

C s
R s

 = 2

14
2 14s s+ +

The compensated system’s closed-loop transfer function is

( )
( )

C s
R s

 = 2

7
4 7s s+ +
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A MATLAB program to plot the unit-step response curves of the original and compen-
sated systems is given below. The unit-step response curves are shown in Fig. E 3.28(c).

% MATLAB Program
num = [0 0 14];
den = [1 2 14];
numc = [0    0 7];
denc = [1   4 7];
t = 0: 0.01: 5;
c1 = step(num, den, t);
c2 = step(numc, denc, t);
plot(t, c1, ‘.’, t, c2, ‘–’)
xlabel(‘t Sec’)
ylabel(‘Outputs’)
text(1.5, 1.3, ‘Original system’)
text(1.7, 1.14, ‘Compensated system’)
grid
title(‘Unit-Step Responses of Original System and Compensated System’)
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Fig. E 3.28(c)

Example 3.29. For the control system shown in Fig. E 3.29 design a compensator such
that the dominant closed-loop poles are located at s = – 1 + j1. Determine also the unit-step and
unit ramp responses of the uncompensated and compensated systems.

)s5.0(

1
2Gc(s)

+

– Lead compensator

Fig. E 3.29.
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Solution. For a desired closed-loop pole at s = – 1 + j1, the angle contribution of the two
open-loop poles at the origin is given by  – 135º – 135º = – 270º. Therefore,  the angel deficiency
is given by

180º – 135º – 135º = – 90º
Hence, the compensator must contribute 90º.
We select a lead compensator of the form

Gc(s) = K
s a
s b

+
+

and choose the zero of the lead compensator at s = – 0.5. In order to obtain the phase lead angle
of 90º, the pole of the compensator must be located at s = – 3 (see Fig. E 3.29(a).

jω
j2

j1

–j1

10–1–2

90º

σ
–3

Fig. E 3.29(a) Pole-zero location of lead compensator contributing
90º phase lead.

Therefore Gc(s) = K
0.5
3

s
s
+
+

where K must be obtained from the magnitude condition as

2
1 1

0.5 2
3 s j

s
K

s s = − +

+
+

 = 1

or K =
2

1 1

( 3)
2( 0.5)

s j

s s
s

= − +

+
+

 = 2

Therefore,  the lead compensator becomes

Gc(s) = 2
0.5
3

s
s
+
+

The feed forward transfer function is

Gc(s) = 
2

1

0.5s
 = 3 2

4 2
3

s
s s

+
+
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The root-locus plot of the system is shown in Fig. E 3.29(b).
The closed-loop transfer function is given by

( )
( )

C s
R s

 = 3 2

4 2
3 4 2

s
s s s

+
+ + +

The closed-loop poles are located at s = – 1 ± j1 and s = – 1.
Now we determine the unit-step and unit-ramp responses of the uncompensated and

compensated systems.
A MATLAB program is written to obtain unit-step response curve. The resulting curves

are shown in Fig. E 3.29(b).
% MATLAB program

num = [0  0 2];
den = [1  0 2];
nume = [0   0 4 2];
dene = [1  3 4 2];
t = 0:0.02:10;
c1 = step(num, den, t);
c2 = step(numc, denc, t);
plot(t, c1, ‘.’, t, c2, ‘-’)
grid
title(‘Unit-Step Responses of Uncompensated and Compensated Systems’)
xlabel(‘t Sec’)
ylabel(‘Outputs’)
text(2, 0.88, ‘Compensated system’)
text(3.1,1.48, ‘Uncompensated system’)
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Fig. E 3.29(b) Unit step Response.
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A MATLAB program to obtain unit-ramp response curve is given below. The resulting
response curves are shown in Fig. E 3.29(c).

% MATLAB program
num = [0  0 0 1];
den = [1  0 1 0];
nume = [0   0 0 4 2];
dene = [1  3 4 2 0];
t = 0:0.02:15;
c1 = step(num, den, t);
c2 = step(numc, denc, t);
plot(,t, c1, ‘.’, t, c2, ‘–’)
grid
title(‘Unit-Ramp Responses of Uncompensated and Compensated Systems’)
xlabel(‘t Sec’)
ylabel(‘Input and Outputs’)
legend(‘.’, ‘uncompensated system’, ‘–’, ‘compensated system’)
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 Fig. E 3.29(c) Unit Ramp Response.

Example 3.30. The PID control of a second-order plant G(s) control system is shown in
Fig. E 3.30. Consider the reference input R(s) is held constant. Design a control system such that
the response to any step disturbance will be damped out in 2 to 3 secs in terms of the 2% settling
time. Select the configuration of the closed-loop poles such that there is a pair of dominant
closed-loop poles. Obtain the response to the unit-step disturbance input and to the unit-step
reference input.
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Fig. E 3.30.

Solution. The transfer function is

Gc(s) = 
( 1)( 1)K as bs

s
+ +

The closed-loop transfer function is given by

 
( )

( )
dC s

D s
 = 2( 3.4 8) ( 1)( 1)

s
s s s K as bs+ + + + +

= 3 2(3.4 ) (8 )
s

s Kab s Ka Kb s K+ + + + + +
(1)

It is required that the response to the unit-step disturbance be such that the settling time
be 2 to 3s and the system have reasonable damping. Hence, we chose ξ = 0.5 and ωn = 4 rad/s for the
dominant closed-loop poles and the third pole at s = – 10 so that the effect of this real pole on the
response is small. The desired characteristic equation is then given by

(s + 10)(s2 + 2 × 0.5 × 4s + 42) = (s + 10)(s2 + 4s + 16)
= s3 + 14s2 + 56s + 160

The characteristic equation for the system given by Eq. (1) is
s3 + (3.4 + Kab)s2 + (8 + Ka + Kb)s + K = 0

Therefore
3.4 + Kab = 14
8 + Ka + Kb = 56
K = 160

which gives
ab = 0.06625, a + b = 0.3

The PID controller now is given by

Gc(s) = 
2[ ( ) 1]K abs a b s

s
+ + +

 = 
+ +2160(0.06626 0.3 1)s s

s

= 
+ +210.6( 4.528 15.09)s s

s
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With this PID controller, the response to the disturbance is

Cd(s) = 3 214 56 160
s

s s s+ + +
D(s) = 2( 10)( 4 16)

s
s s s+ + +

D(s)

For a unit-step disturbance input, the steady-state output is zero, since

lim ( )d
t

c t
→ ∞

 = 
0

lim
s →

sCd (s) = 
0

lim
s →

 
2

2( 10)( 4 16)
s

s s s+ + +
 
1
s

 = 0

The response to a unit-step disturbance input is obtained with MATLAB program. The
response curve is shown in Fig. E 3.30(a). From the response curve we note that the settling
time is approximately 2.7 s. The response damps out rather quickly. Hence, the system de-
signed is acceptable.

% Response to unit-step disturbance input
numd = [0    0 1 0];
dend = [1  14 56 160];
t = 0:0.01:5;
[c1, x1, t] = step(numd, dend, t);
plot(t, c1)
grid
title(‘Response to Unit-Step Disturbance Input’)
xlabel(‘t Sec’)
ylabel(‘Output to Disturbance Input’)
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For the reference input r(t), the closed-loop transfer function is

( )
( )

rC s
R s

 = 
2

3 2

10.6( 4.528 15.09)

14 56 160
s s

s s s

+ +
+ + +

 = 
2

3 2

10.6 48 160

14 56 160
s s

s s s

+ +
+ + +

The response to a unit-step reference input is obtained by the MATLAB program. The
resulting response curve is shown in Fig. 3.30(b). The response curve shows that the maximum
overshoot is 7.3% and the settling time is 1.7s. Thus, the system has quite acceptable response
characteristics.

% Response to unit-step reference input
numr = [0    10.6 48 160];
denr = [1  14 56 160];
t = 0:0.01:5;
[c2, x2, t] = step(numr, denr, t);
plot(t, c2)
grid
title(‘Response to Unit-Step Reference Input’)
xlabel(‘t Sec’)
ylabel(‘Output to Reference Input’)
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Example 3.31. For the closed-loop control system shown in Fig. E 3.31, obtain the range
of gain K for stability and plot a root-locus diagram for the system.
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Fig. E 3.31.

Solution. The range of gain K for stability is obtained by first plotting the root loci and
then finding critical points (for stability) on the root loci. The open-loop transfer function G(s) is

G(s) = 
2

2

( 2 5)

( 3)( 5)( 1.5 1)
K s s

s s s s s

+ +
+ + + +

        = 
2

5 4 3 2

( 2 5)
9.5 28 20 15

K s s
s s s s s

+ +
+ + + +

A MATLAB program to generate a plot of the root loci for the system is given below. The
resulting root-locus plot is shown in Fig. E 3.31(a).

% MATLAB program
num = [0 0 0 1 2 5];
den = [1 9.5 28 20 15 0];
rlocus(num,den)
v = [– 8 2 – 5 5]; axis(v); axis(‘square’)
grid
title(‘Root-Locus Plot’)
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Fig. E 3.31(a)

From Fig. E 3.31(a), we notice that the system is conditionally stable. All critical points
for stability lie on the jω axis.
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To obtain the crossing points of the root loci with the jω axis, we substitute s = jω into the
characteristic equation

s5 + 9.5s4 + 28s3 + 20s2 + 15s + K(s2 + 2s + 5) = 0
or   (jω)5 + 9.5(jω)4 + 28(jω)3 + (20 + K)(jω)2 + (15 + 2K)(jω) + 5K = 0
or [9.5ω4 – (20 + K) ω2 + 5K] +  j[ω5 – 28ω3 + (15 + 2K) ω] = 0

Equating the real part and imaginary part equal to zero, respectively, we get
9.5ω4 – (20 + K) ω2 + 5K = 0 (E.1)
  ω5 – 28ω3 + (15 + 2K) ω = 0                                       (E.2)

Eq. (2) can be written as
ω = 0

or ω4 – 28ω2 + 15 + 2K = 0  (E.3)

K = 
4 228 15

2
− ω + ω −

(E.4)

Substituting Eq. (4) into Eq. (1), we obtain
9.5ω4 – [20 + ½(– ω4 + 28ω2 – 15)] ω2 – 2.5ω4 + 70ω2 – 37.5 = 0

or 0.5ω6 – 2ω4 + 57.5ω2 – 37.5 = 0
The roots of the above equation can be obtained by MATLAB program given below.
% MATLAB program
a = [0.5 0 – 2 0 57.5 0 – 37.5];
roots(a)
Output is:
ans =
  – 2.4786 + 2.1157i
  – 2.4786 – 2.1157i

   2.4786 + 2.1157i
   2.4786 – 2.1157i

   0.8155
  – 0.8155
The root-locus branch in the upper half plane that goes to infinity crosses the jω axis at ω

= 0.8155. The gain values at these crossing points are given by

K = 
4 20.8155 28 0.8155 15

2
− + × −  = 1.5894    for ω = 0.8155

For this K value, we obtain the range of gain K for stability as
1.5894 > K > 0

Example 3.32. For the control system shown in Fig. E 3.32:
(a) plot the root loci for the system

(b) find the range of gain K for stability.
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Fig. E 3.32.

Solution. The open-loop transfer function G(s) is given by

G(s) = K
3
5

s
s

+
+ 2

3
( 3)s s +

 = 4 3 2

3 ( 3)
8 15
K s

s s s
+

+ +

A  MATLAB program to generate the root-locus plot is given below. The resulting plot is
shown in Fig. E 3.32(a).

% MATLAB program
num = [0 0 0 1 3];
den = [1 8 15 0 0];
rlocus(num,den)
v = [– 6 4 – 5 5]; axis(v); axis(‘square’)
grid
title(‘Root-Locus Plot’)

5

4

3

2

1

0

– 1

– 2

– 3

– 4

– 5
– 6 – 4 – 2 0 2 4

Real Axis

Root Locus

Im
ag

 A
xi

s

Fig. E 3.32(a).

From Fig. E 3.32(a),  we notice that the critical value of gain K for stability corresponds
to the crossing point of the root locus branch that goes to infinity and the imaginary axis.
Therefore, we first find the crossing frequency and then find the corresponding gain value.

The characteristic equation  is
s4 + 8s3 + 15s2 + 3Ks + 9K = 0
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Substituting s = jω into the characteristic equation, we get
(jω)4 + 8(jω)3 + 15(jω)2 + 3K(jω) + 9K = 0

or (ω4 – 15ω2 + 9K) + jω(– 8ω2 + 3K) = 0
Equating the real part and imaginary part of the above equation to zero, respectively, we

obtain
ω4 – 15ω2 + 9K = 0 (E.1)
  ω(– 8ω2 + 3K) = 0 (E.2)

Eq. (2) can be rewritten as
 ω = 0

or – 8ω2 + 3K = 0 (E.3)
Substituting the value of K in Eq.(1), we get

ω4 – 15ω2 + 9 x
8
3

 ω2 = 0

or ω4 + 9ω2 = 0
which gives

ω = 0 and ω = ± j 3
Since ω = j3 is the crossing frequency with the jω axis, by substituting ω = 3 into Eq. (E.3)

we obtain the critical value of gain K for stability as

K = 
8
3

 ω2 = 
8
3

 × 9 = 24

Therefore, the stability range for K is
24 > K > 0.

Example 3.33. For the control system shown in Fig. E 3.33:

(a) plot the root loci for the system
(b) find the value of K such that the damping ratio ζ of the dominant  closed-loop poles is

0.6

(c) obtain all closed-loop poles
(d) plot the unit-step respond curve using MATLAB.

)5s)(3s(s

K

++
+

–

Fig. E 3.33

Solution. (a) The MATLAB program given below generates a root-locus plot for the
given system. The resulting plot is shown in Fig. E 3.33(a).

% MATLAB program

num = [0 0 0 1];
den = [1 8 15 0];
rlocus(num, den)
v = [– 6 4 – 5 5]; axis(v); axis(‘square’)
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grid
title(‘Root-Locus Plot’)
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Fig. E 3.33(a)

(b) We note that the constant ζ points (0 < ζ < 1) lie on a straight line having angle θ from
the jω axis as shown in Fig. E 3.33(b).

jω

θ

ωn

–ζωn
σ

Constant ζ line

Fig. E 3.33(b)

From Fig. E 3.33(b),  we obtain

sin θ = n

n

ζω
ω

 = ζ

Also that ζ = 0.6 line can be defined by
s = – 0.75a + ja

where a is a variable (0 < a < ∞). To obtain the value of K such that the damping ratio ζ of the
dominant closed-loop poles is 0.6 we determine  the intersection of the line s = – 0.75a + ja and
the root locus. The intersection point can be obtained by solving the following simultaneous
equations for a.

s = – 0.75a + ja (E.1)
s(s + 3)(s + 5) + K = 0 (E.2)
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From Eqs. (1) and (2), we obtain
(– 0.75a + ja)(– 0.75a + ja + 3)(– 0.75a + ja + 5) + K = 0

or (1.8281a3 – 2.1875a2 – 3a + K) + j(0.6875a3 – 7.5a2 + 15a) = 0
Equating the real part and imaginary part of the above equation to zero, respectively, we

obtain
1.8281a3 – 2.1875a2 – 3a + K = 0 (E.3)

0.6875a3 – 7.5a2 + 4a = 0 (E.4)
Eq. (E.4) can be rewritten as

a = 0
or 0.6875a2 – 7.5a + 4 = 0
or a2 – 10.90991a + 5.8182 = 0
or (a – 0.5623)(a – 10.3468) = 0

Therefore a = 0.5323  or  a = 10.3468
From Eq. (E.3) we obtain

K = – 1.8281a3 + 2.1875a2 + 3a = 2.0535         for a = 0.5626
K = – 1.8281a3 + 2.1875a2 + 3a = – 1759.74    for a = 10.3468

Since the K value is positive for a = 0.5623 and negative for a = – 10.3468, we select
a = 0.5623. The required gain K is 2.0535.

The characteristic equation with K = 2.0535 is then
s(s + 3)(s + 5) + 2.0535 = 0

or s3 + 8s2 + 15s + 2.0535 = 0
(c) The closed-loop poles can be obtained by the following MATLAB program.
% MATLAB Program

p = [1    8 15 2.0535];
roots(p)
ans =
   – 5.1817
   – 2.6699
   – 0.1484
Hence, the closed-loop poles are located at

s = – 5.1817,  s = – 2.6699, s = – 4.1565
(d) The unit-step response of the system for K = 2.0535 can be obtained from the follow-

ing MATLAB program. The resulting unit-step response curve is shown in Fig. E 3.33(c).
% MATLAB program

num = [0 0 0 2.0535];
den = [1 8 15 2.0535];
step(num,den)
grid
title(‘Unit-Step Response’)
xlabel(‘t Sec’)
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 Fig. E 3.33(c)

Example 3.34. For the control system shown in Fig. E3.34, the open-loop transfer func-
tion is given by

G(s) = 
1

s(s + 2)(0.6s + 1)

Design a compensator for the system such that the static velocity error constant Kv is
5s– 1, the phase margin is at least 50º, and the gain margin is at least 10 dB.

1)2)(0.6ss(s

1

++R(s) C(s)
+

–

Fig. E 3.34

Solution. We can use a lag compensator of the form

Gc(s) = Kcβ
1
1

Ts
Ts

+
β +

 = Kc

1

1

s
T

s
T

+

+
β

 β > 1

Defining Kcβ = K

and G1(s) = KG(s) = 
( 2)(0.6 1)

K
s s s+ +

we adjust the gain K to meet the required static velocity error constant.
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Hence Kv =  
0

lim
s →

sGc(s)G(s) = 
0

lim
s →

s 
1
1

Ts
Ts

+
β +

G1(s) = 
0

lim
s →

sG1(s)

= 
0

lim
s →

 
( 2)(0.6 1)

sK
s s s+ +

 = 
2
K

 = 5

or K = 10
With K = 10, the compensated system satisfies the steady-state performance require-

ment.
We can now plot the Bode diagram of

G1(jω) = 
10

( 2)(0.6 1)j j jω ω + ω +

The magnitude curve and phase-angle curve of G1(jω) are shown in Fig. E 3.34(a). From
this plot, the phase margin is found to be – 20º, which shows that the system is unstable.
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 Fig. E 3.34(a) Bode diagrams for G1 = KG (gain-adjusted but
     uncompensated system), Gc/K (gain-adjusted compensator),

and GcG (compensated system).

The addition of a lag compensator modifies the phase curve of the Bode diagram and
therefore we must allow 5º to 12º to the specified phase margin to compensate for the modifica-
tion of the phase curve. Since the frequency corresponding to a phase margin of 50º is 0.7 rad/s,
the new gain crossover frequency (of the compensated system) must be selected near this value.
We choose the corner frequency ω = 1/T. Since this corner frequency is not too far below the new
gain crossover frequency, the modification in the phase curve may not be small. Also, we add
about 12º to the given phase margin as an allowance to account for the lag angle introduced by
the lag compensator. The required phase margin is now 52º. The phase angle of the
uncompensated open-loop transfer function is – 128º at about ω = 0.5 rad/s. Hence, we choose
the new gain crossover frequency to be 0.5 rad/s. In order to bring the magnitude curve down to
0 dB, the lag compensator is given the necessary attenuation, which in this case is – 20 dB.
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Therefore 20 log
1
β

 = – 20

or     β = 10
The other corner frequency ω = 1(βT). This corresponds to the pole of the lag compensa-

tor and is obtained as

 1
Tβ

 = 0.01 rad/s

Hence, the transfer function of the lag compensator is given by

Gc(s) = Kc(10) 
10 1
100 1

s
s
+
+

 = Kc 

1
10
1

100

s

s

+

+

Since the gain K was calculated to be 10 and β was determined to be 10, we have

Kc = 
K
β

 = 
10
10

 = 1

Therefore, the compensator Gc(s) is obtained as

Gc(s) = 10 
10 1
100 1

s
s
+
+

The open-loop transfer function of the compensated system is therefore

Gc(s)G(s) = 
10(10 1)

(100 1)( 2)(0.6 1)
s

s s s s
+

+ + +

The magnitude and phase-angle curves of Gc(jω)G(jω) are shown in Fig. E 3.34(b).
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Fig. E 3.34(b)
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The phase margin of the compensated system is about 50º(the required value). The gain
margin is about 11 dB (acceptable). The static velocity error constant is 5s–1. Thus, the compen-
sated system satisfies the requirements on both the steady state and the relative stability.

We determine now the unit-step response and unit-ramp response of the compensated
system and the original uncompensated system. The closed-loop transfer functions of the com-
pensated and uncompensated systems are given by

( )
( )

C s
R s

 = 4 3 2

100 10
60 220.6 202.2 102 10

s
s s s s

+
+ + + +

and
( )
( )

C s
R s

 = 3 2

1
0.6 2.2 2 1s s s+ + +

respectively.
A MATLAB program to obtain the unit-step and unit-ramp responses of the compen-

sated and uncompensated systems is given below. The resulting unit-step response curves and
unit-ramp response curves are shown in Fig. E 3.34(c) and E 3.34(d) respectively.

%MATLAB program

% Unit-step response
num = [0 0 0 1];
den = [0.6  2.2 2 1];
numc = [0   0 0 100 10];
denc = [60    220.6       202.2 102 10];
t = 0:0.1:40;
[c1, x1, t] = step(num, den);
[c2, x2, t] = step(numc, denc);
plot(t, c1, ‘.’, t, c2, ‘–’)
grid
title(‘Unit-Step Responses of Compensated and Uncompensated Systems’)
xlabel(‘t Sec’)
ylabel(‘Outputs’)
text(12.2, 1.27, ‘Compensated System’)
text(12.2,0.7, ‘Uncompensated System’)
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% Unit-ramp response
num1 = [0 0 0 0 1];
den1 = [0.6  2.2 2 1 0];
num1c = [0 0 0 0 100 10];
den1c = [60 220.6 202.2 102 10 0];
t = 0:0.1:20;
[y1, z1, t] = step(num1, den1, t);
[y2, z2, t] = step(num1c, den1c, t);
plot(t, y1, ‘.’, t, y2, ‘–’, t, t, ‘–’)
grid
title(‘Unit-Ramp Responses of Compensated and Uncompensated Systems’)
xlabel(‘t Sec’)
ylabel(‘Outputs’)
text(8.4,3, ‘Compensated System’)
text(8.4,5, ‘Uncompensated System’)
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Example 3.35. The open-loop transfer function of a unit-feedback system is given by

G(s) = 
K

s(s + 3)(s + 5)

Design a compensator Gc(s) such that the static velocity error constant is 10s– 1, the phase
margin is 50º, and the gain margin is 10 dB or more.

Solution. We consider a lag-lead compensator of the form

Gc(s) = Kc 
1 2

1 2

1 1
s s

T T

s s
T T

   
+ +   

   
   β β+ +   
   

The open-loop transfer function of the compensated system is Gc(s)G(s). For Kc = 1,

0
lim
s →

Gc(s) = 1. For the static velocity error constant, we have

Kv = 
0

lim
s →

sGc(s)G(s) = 
0

lim
s →

sGc(s). 
( 3)( 5)

K
s s s+ +

 = 
15
K

 = 10

Therefore K = 150
For K = 150, A MATLAB program e used to plot the Bode diagram is given below and the

diagram obtained is shown in Fig. E 3.35(a).
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% MATLAB program

num = [0 0 0 150];
den = [1 8 15 0];
bode(num, den, w)
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Fig. E 3.35(a) Bode diagram of G(s) = 150/[s(s + 3)(s + 5)].

From Fig.3.35 the phase margin of the uncompensated system is – 6º, which shows that
the system is unstable. To design a lag-lead compensator we choose a new gain crossover fre-
quency. From the phase-angle curve for G(jω), the phase crossover frequency is ω = 2 rad/s. We
can select the new gain crossover frequency to be 2 rad/s such that the phase-lead angle re-
quired at ω = 2 rad/s is about 50º. A single lag-lead compensator can provide this amount of
phase-lead angle.

We can find the corner frequencies of the phase-lag portion of the lag-lead compensator.
Choosing the corner frequency ω = 1/T2 , corresponding to the zero of the phase-lag portion of
the compensator as 1 decade below the new gain crossover frequency, or at ω = 0.2 rad/s. For
another corner frequency ω = 1/(βT2), we need the value of β. The value of β can be obtained
from the consideration of the lead portion of the compensator.

The maximum phase-lead angle φm is given by Eq. (9.10). For α = 1/β, we have given

sin φm = 
1
1

β −
β +

β = 10 corresponds to φm = 54.9º. We require a 50º phase margin, so we can select β = 10.
Hence

β = 10
Then the corner frequency ω = 1/(βT2) and ω = 0.02.
The transfer function of the phase-lag portion of the lag-lead compensator is

0.2
0.02

s
s

+
+

 = 10
5 1

50 1
s
s

 +
 + 
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The new gain crossover frequency is ω = 2 rad/s, and  |G(j2)| is found to be 6 dB. There-
fore, if the lag-lead compensator contributes – 6 dB at ω = 2 rad/s, then the new gain crossover
frequency is as desired. From this requirement, it is possible to draw a straight line of slope
20 dB/decade passing through the point (– 6 dB, – 2 rad/s). The intersections of this line and the
0-dB line and – 20 dB line gives the corner frequencies. The corner frequencies for the lead
portion are ω = 0.4 rad/s and ω = 4 rad/s. Hence, the transfer function of the lead portion of the
lag-lead compensator is given by

0.4
4

s
s
+
+

 = 
1

10
 

2.5 1
0.25 1

s
s

 +
 + 

By combining the transfer functions of the lag and lead portions of the compensator, we
can find the transfer function Gc(s) of the lag-lead compensator. For Kc = 1, we get

Gc(s) = 0.4
4

s
s
+
+

 0.2
0.02

s
s

+
+

 = 
(2.5 1)(5 1)

(0.25 1)(50 1)
s s
s s

+ +
+ +

The Bode diagram of the lag-lead compensator Gc(s) is obtained by the following MATLAB
program. The resulting plot is shown in Fig. E 3.35(b).

% MATLAB program
num = [1 0.6 0.08];
den = [1 4.02 0.08];
bode(num, den)
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 Fig. E 3.35(b) Bode diagram of the designed lag-lead compensator.

The open-loop transfer function of the compensated system is

Gc(s)G(s) = 
( 0.4)( 0.2)
( 4)( 0.02)
s s
s s

+ +
+ +

150
( 3)( 5)s s s+ +
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= 
2

5 4 3 2

150 90 12
12.02 47.24 60.94 1.2

s s
s s s s s

+ +
+ + + +

The magnitude and phase-angle curves of the designed open-loop transfer function
Gc(s)G(s) are shown in the Bode diagram of Fig. E 3.35(c). This diagram is obtained using
following MATLAB program. Note that the denominator polynomial den was obtained using
the conv command, as follows:

a = [1   4.02  0.08];
b = [1    8  15 0];

conv(a, b)
ans =

1.0000   12.0200   47.2400   60.9400    1.2000         0
% MATLAB program
num = [0 0    0 150 90 12];
den = [1 12.02 47.24  60.94 1.2 0];
bode(num, den)
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Fig. E 3.35(c) Bode Diagram of Gc(s).G(s).

From Fig. E 3.35(c), the requirements on the phase margin, gain margin, and static
velocity error constant are all satisfied.

Unit-step response

Now Gc(s)G(s) = 
( 0.4)( 0.2)
( 4)( 0.02)
s s
s s

+ +
+ +

 
150

( 3)( 5)s s s+ +
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and
( )
( )

C s
R s

 = ( ) ( )
1 ( ) ( )

c

c

G s G s
G s G s+

= 
2

5 4 3 2

150 90 12

12.02 47.24 210.94 91.2 15.2
s s

s s s s s

+ +
+ + + + +

The unit-step response is obtained by the following MATLAB program and the unit-step
response curve is shown in Fig. E 3.35(d).

% MATLAB program
num = [0 0 0 150 90 12];
den = [1 12.02 47.24 210.94 91.2 15.2];
t = 0:0.2:40;
step(num, den, t)
grid
title(‘unit-Step Response of Designed System’)
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Fig. E 3.35(d)  Unit-step Response of designed system Gc(s)G(s).

Unit-ramp response
The unit-ramp response of this system is obtained by the following MATLAB. The unit-

ramp response of Gc(G/(1 + GcG) converted into the unit-step response of GcG/[s(1 + GcG)]. The
unit-ramp response curve obtained is shown in Fig. 3.35(e).

% MATLAB program
num = [0 0 0 0 150 90 12];
den = [1 12.02 47.24 210.94 91.2  15.2 0];
t = 0:0.2:20;
c = step(num, den, t)
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plot(t, c, t, t, ‘.’)
grid
title(‘Unit-Ramp Response of the Designed System’)
xlabel(‘Time (sec)’)
ylabel(‘Amplitude’)
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Fig. E 3.35(e)Unit-ramp response of the designed system.

Example 3.36. The open-loop transfer function of a unity-feedback control system is given
by

G(s) = 
2

K
s(s + s + 5)

(a) determine the value of gain K such that the phase margin is 50º

(b) find the gain margin for the gain K obtained in (a).
Solution.

G(s) = 2( 5)
K

s s s+ +

The undamped natural frequency is 5  rad/s and the damping ratio of 0.1. 5  from the
denominator.

Let the frequency corresponding to the angle of – 130º (Phase Margin of 50) be ω1 and
therefore

∠ G(jω1) = – 130º
The Bode diagram is shown in Fig. E 3.36 from MATLAB program.
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Fig. E 3.36.

From Fig. E 3.36,  the required phase margin of 50º and occurs at the frequency ω = 1.06
rad/s. The magnitude of G(jω) at this frequency is then – 7 dB. The gain K must then satisfy

20 log K = 7 dB
or K = 2.23

Example 3.37. For the control system shown in Fig. E 3.37:
(a) design a lead-compensator Gc(s) such that the phase margin is 45º, gain margin is not

less than 8 dB, and the static velocity error constant Kv is 4 s – 1

(b) plot unit-step and unit-ramp response curves of the compensated system using MATLAB.

K

s(0.1s 1)(s 1)+ +Gc(s)
+

–

Fig. E 3.37.

Solution. Consider the  lead compensator

Gc(s) = Kcα
1
1

Ts
Ts

+
α +

 = Kc 

1

1

s
T

s
T

+

+
α

Since Kv is given as 4 s–1, we have

Kv = 
0

lim
s →

 sKcα
1
1

Ts
Ts

+
α +

 
(0.1 1)( 1)

K
s s s+ +

 = Kc ∝  K = 4



208 ANALYSIS AND DESIGN OF CONTROL SYSTEMS USING MATLAB

Let  K = 1 and define Kcα = K
∧

. Then

 K
∧

 = 4
The  Bode diagram of

 4
(0.1 1)( 1)s s s+ +

 = 3 2

4
0.1 1.1s s s+ +

is obtained by the following MATLAB program. The Bode diagram is shown in Fig. E 3.37(a).
% MATLAB program

num = [0  0 0 4];
den = [0.1  1.1 1 0];
bode(num, den)
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 Fig. E 3.37(a).

From Fig. E 3.37(a), the phase and gain margins are 17º and 8.7 dB, respectively. For a
phase margin of 45º, let us select

φm = 45º – 17º + 12º = 40º
The maximum phase lead is 40º. Since

sin φm = 
1
1

− α
+ α

(φm = 40º)

α is obtained as 0.2174. Let us choose
α = 0.21

To determine the corner frequencies ω = 1/T and ω = 1/(αT) of the lead compensator we
note that the maximum phase-lead angle φm occurs at the geometric mean of the two corner
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frequencies, or ω = 1/( α T). The amount of the modification in the magnitude curve at

ω = 1/( α T) due to the inclusion of the term (Ts + 1)/(αTs + 1) is then given by

1

1
1

T

j T
j T ω =

α

+ ω
+ ωα

 = 
1
α

Since 
1
α

 = 
1

0.21
 = 2.1822 = 6.7778 dB

The magnitude of |G(jω)| is – 6.7778 dB which  corresponds to ω = 2.81 rad/s. Therefore,
we select this as the new gain crossover frequency ωc.

1
T

 = α ωc = 0.21  × 2.81 = 1.2877

1
Tα

 = cω
α

 = 
2.81
0.21

 = 6.1319

or Gc(s) = Kc 
1.2877
6.1319

s
s

+
+

and Kc = K
∧

α
 = 

4
0.21

Hence Gc(s) = 
4

0.21
 1.2877

6.1319
s
s

+
+

 = 4
0.7768 1
0.16308 1

s
s
+
+

The open-loop transfer function is

Gc(s)G(s) = 4 
0.7768 1
0.16308 1

s
s
+
+

 
1

(0.1 1)( 1)s s s+ +

= 4 3 2

3.1064 4
0.01631 0.2794 1.2631

s
s s s s

+
+ + +

The closed-loop transfer function is

( )
( )

C s
R s

 = 4 3 2

3.1064 4
0.01631 0.2794 1.2631 4.1064 4

s
s s s s

+
+ + + +

The following MATLAB program produces the unit-step response curve as shown in
Fig. E 3.37(b).

% MATLAB program
num = [0  0 0 3.1064 4];
den = [0.01631  0.2794 1.2631 4.1064 4];
step(num, den)
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grid
title(‘Unit-Step Response of Compensated System’)
xlabel(‘t Sec’)
ylabel(‘Output c(t)’)
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Fig. E 3.37(b).

The following MATLAB program produces the unit-ramp response curves as shown in
Fig. E 3.37(c).

% MATLAB program

num = [0 0  0 0 3.1064 4];
den = [0.01631  0.2794 1.2631 4.1064 4 0];
t = 0:0.01:5;
c = step(num, den, t);
plot(t, c, t, t)
grid
title(‘Unit-Ramp Response of Compensated System’)
xlabel(‘t Sec’)
ylabel(‘Unit-Ramp Input and System Output c(t)’)
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Fig. E 3.37(c)

Example 3.38. Obtain the unit-step response and unit-impulse response for the following
control system using MATLAB. The initial conditions are all zero.

1

2

3

4

x

x

x

x

 
 
 
 
 
  

�

�

�

�

 = 

0 1 0 0

0 0 1 0
0 0 0 1

0.0069 0.0789 0.5784 1.3852

 
 
 
 
 − − − −  

1

2

3

4

x

x

x

x

 
 
 
 
 
  

 + 

0

0
0
2

 
 
 
 
 
  

 [u]

     y = [1 0 0 0] 

1

2

3

4

x

x

x

x

 
 
 
 
 
  

Solution. Unit-step response: The following MATLAB program yields the unit-step re-
sponse of the given system. The resulting unit-step response curve is shown in Fig. E 3.38(a).

% MATLAB program
A = [0 1 0 0;0 0 1 0; 0 0 0 1; – 0.0069 – 0.0789 – 0.5784 – 1.3852];
B = [0; 0; 0; 2];
C = [1 0 0 0];
D = [0];
step(A, B, C, D);
grid
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xlabel(‘t Sec’)
ylabel(‘Output y(t)’)
The output is shown in Fig. E 3.38(a).
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Fig. E 3.38(a)

Similarly with impulse(A, B, C, D) statement, we obtain the response as shown in
Fig. E 3.38(b).
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Fig. E 3.38(b)

Example 3.39. Obtain the state-space representation of the following system using
MATLAB.

( )
( )

C s
R s

 = 3 2
35s + 7

s + 5s + 36s + 7
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Solution.
A MATLAB program to obtain a state-space representation of this system is given below.
% MATLAB program

>> num = [0 0 35 7];
>> den = [1 5 36 7];
>> g = tf(num,den)
 Transfer function:
       35 s + 7
-----------------------------
s^3 + 5 s^2 + 36 s + 7
>> [A, B, C, D] = tf2ss(num, den)
A =
    – 5   – 36   – 7
     1        0       0
     0        1       0
B =
     1
     0
     0
C =
     0    35     7
D =
     0
From the MATLAB output we obtain the following state space equations:

1

2

3

x
x
x

 
 
 
  

�

�

�

 = 

5 36 7
1 0 0
0 1 0

− − − 
 
 
  

1

2

3

x
x
x

 
 
 
  

 + 

1
0
0

 
 
 
  

u

      y = [0 35 7] 
1

2

3

x
x
x

 
 
 
  

 + [0]u

Example 3.40. Represent the system shown in Fig. E 3.40 using MATLAB in

(a) state space in phase-variable form
(b) state space in modal form.

)8s()6s()4s()1s(

)5s()3s(10

++++
++R(s) C(s)+

–

Fig. E 3.40.
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Solution.
% MATLAB Program
(a) phase-variable form’
‘G(s)’
G = zpk([– 3 – 5], [– 1  – 4  – 6 – 8], 10)
‘T(s)’
T = feedback(G, 1, – 1)
[numt, dent] = tfdata(T, ‘V’);
‘Controller canonical form determination’
[AC, BC, CC, DC] = tf2ss(numt, dent)
A1 = flipud(AC);
‘Phase-variable form representation’
Apv = fliplr(A1)
Bpv = flipud(BC)
Cpv = fliplr(CC)
(b) Modal form’
‘G(s)’
G = zpk([– 3 – 5], [– 1 – 4 – 6 – 8], 10)
‘T(s)’
T = feedback(G, 1, – 1)
[numt, dent] = tfdata(T, ‘V’);
‘Controller canonical form’
[AC, BC, CC, DC] = tf2ss(numt, dent)
‘Modal form’
[A, B, C, D] = canon(AC, BC, CC, DC, ‘modal’)
Computer response:
ans =
(a) phase-variable form
ans =
G(s)
 Zero/pole/gain:
    10 (s + 3) (s + 5)
------------------------------------
(s + 1) (s + 4) (s + 6) (s + 8)
ans =
T(s)
Zero/pole/gain:
             10 (s + 5) (s + 3)
----------------------------------------------------------
(s + 1.69) (s + 4.425) (s^2 + 12.88s + 45.73)
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ans =
Controller canonical form determination
AC =
  – 19.0000 – 132.0000 – 376.0000 – 342.0000
     1.0000         0         0         0
         0    1.0000         0         0
         0         0    1.0000         0
BC =
     1
     0
     0
     0
CC =
         0   10.0000   80.0000  150.0000
DC =
     0
ans =
Phase-variable form representation
Apv =
         0    1.0000         0         0
         0         0    1.0000         0
         0         0         0    1.0000
 – 342.0000 – 376.0000 – 132.0000  – 19.0000
Bpv =
     0
     0
     0
     1
Cpv =
  150.0000   80.0000   10.0000         0
ans =
(b) Modal form
ans =
G(s)
Zero/pole/gain:
    10 (s + 3) (s + 5)
------------------------------------
(s + 1) (s + 4) (s + 6) (s + 8)
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ans =
T(s)
Zero/pole/gain:
             10 (s + 5) (s + 3)
-----------------------------------------
(s + 1.69) (s + 4.425) (s^2 + 12.88s + 45.73)
ans =
Controller canonical form
AC =
  – 19.0000 – 132.0000 – 376.0000 – 342.0000
    1.0000         0         0         0
         0    1.0000         0         0
         0         0    1.0000         0
BC =
     1
     0
     0
     0
CC =
         0   10.0000   80.0000  150.0000
DC =
     0
ans =
Modal form
A =
   – 6.4425    2.0551              0  0
   – 2.0551   – 6.4425            0 0
         0         0 – 4.4249 0
         0         0       0
B = – 1.6902
   -2.7844
   -9.8159
    3.9211
    0.0811
C =
   – 0.2709    0.1739    0.0921    7.2936
D =
     0
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Example 3.41. Determine the state-space representation in phase-variable form for
the system shown in Fig. E 3.41.

25ss8s10s7s

50
2345 +++++

R(s) C(s)

Fig. E 3.41

Solution. Computer program is as follows:
% MATLAB Program

‘State-space representation’
num = 50
den = [1  7 10 8 1 25];
G = tf(num, den)
[AC, BC, CC, DC] = tf2ss(num, den);
Af = flipud(AC)
A = fliplr(Af)
B = flipud(BC)
C = fliplr(CC)

Computer response:
num =
    50
Transfer function:

  50
--------------------------------------------------
s^5 + 7 s^4 + 10 s^3 + 8 s^2 + s + 25
Af =
     0       0      0     1      0
     0       0      1     0      0
     0       1      0     0      0
     1       0      0     0      0
    –7  – 10  – 8   – 1  – 25
A =
     0     1     0      0      0
     0     0     1      0      0
     0     0     0      1      0
     0     0     0      0      1
  –25  – 1  – 8  – 10  – 7
B =
     0
     0
     0
     0
     1
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C =
    50     0     0     0     0
Example 3.42. Using MATLAB, write the state equations and the output equation

for the phase-variable representation for the following systems in Fig. E 3.42.

8s9s3s7s

7s5
234 ++++

+
R(s) C(s)

(a)

2345

234

s7s5s9s

8s7s12s3s

+++
++++

R(s) C(s)

(b)
Fig. E 3.42.

Solution. (a)
num = [5 7]
num =
     5     7
den = [1 7 3 9 8]
den =
     1     7     3     9     8
 G = tf(num,den)
Transfer function:
           5 s + 7
-------------------------------------
s^4 + 7 s^3 + 3 s^2 + 9 s + 8
[Ac, Bc, Cc, Dc] = tf2ss(num, den);
Af = flipud(Ac)
Af =
       0       0       1      0
       0       1       0      0
       1       0       0      0
    – 7    – 3    – 9    – 8
A = fliplr(Ac)
A =
    – 8    – 9    – 3    – 7
      0       0       0       1
      0       0       1       0
      0       1       0       0
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B = flipud(Bc)
B =
     0
     0
     0
     1
C = fliplr(Cc)
C =     7     5     0     0
Part 2
 num = [1 3 10 5 6];
 den = [1 7 8 6 0 0];
 G = tf(num, den)
Transfer function:
s^4 + 3 s^3 + 10 s^2 + 5 s + 6
------------------------------------
 s^5 + 7 s^4 + 8 s^3 + 6 s^2
[Ac, Bc, Cc, Dc] = tf2ss(num,den);
Af = flipud(Ac);
A = fliplr(Af)
A =
     0     1      0      0      0
     0     0      1      0      0
     0     0      0      1      0
     0     0      0      0      1
     0     0    – 6   – 8  – 7
B = flipud(Bc)
B =
     0
     0
     0
     0
     1
C = fliplr(Cc)
C =
     6     5    10     3     1
Example 3.43. Find the transfer function for the following system using MATLAB.

1

2

3

x
x
x

 
 
 
  

�

�

�

 = – –
–

0 1 0
5 2 0
0 2 6

 
 
 
  

1

2

3

x
x
x

 
 
 
  

 + –
0 0
3 1
5 0

 
 
 
  

u
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y = 
1 0 0

0 0 1
 
 
 

1

2

3

x
x
x

 
 
 
  

Solution.  The transfer function matrix is given by
G(s) = C[sI – A]–1B

where A = 

0 1 0
5 2 0
0 2 6

 
 − − 
 − 

 ; B = 

0 0
3 1
5 0

 
 − 
  

 ; C = 
1 0 0
0 0 1

 
 
 

Hence G(s) = 
1 0 0
0 0 1

 
 
 

 

1 0
5 2 0
0 2 6

s
s

s

− 
 + 
 − + 

0 0
3 1
5 0

 
 − 
  

>> %MATLAB Program
>> syms s
>> C = [1 0 0; 0 0 1];
>> M = [s – 1 0; 5 s + 2 0; 0 – 2 s + 6];
>> B = [0 0; 3 – 1; 5 0];
>> C*inv(M)*B

 ans =
 [     3/(s^2 + 2*s + 5),   – 1/(s^2 + 2*s + 5)]
[ 6*s/(s^3 + 8*s^2 + 17*s + 30) + 5/(s + 6),        – 2*s/(s^3 + 8*s^2 + 17*s + 30)]
Example 3.44. A control system is defined by the following state space equations:

1

2

x

x
 
 
 

�

�

 = 
4 1

2 3

− − 
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1
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x

x
 
 
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 + 
1

3
 
 
 

u

      y = [1 2] 1

2

x

x
 
 
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Find the transfer function G(s) of the system using MATLAB.
Solution.

A = 
4 1
2 3

− − 
 − 

 ; B = 
1
3

 
 
 

 ; C = [1 2]

The transfer function G(s) of the system is

G(s) = C(sI – A)–1 B = [1 2] 
4 1

2 3
s

s

+ 
 − + 

 
1
3

 
 
 
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= [1 2] 
1

[( 4)( 3) 2]s s+ + +
 

3 1
2 4

s

s

+ − 
 + 

 
2
5

 
 
 

= 2

1
[ 7 14]s s+ +

 [1 2] 
2 1

5 24
s

s

+ 
 + 

 = 
+

+ +2

[12 49]
[ 7 14]

s
s s

>> %MATLAB Program
>> A = [– 4 – 1; 2 – 3];
>> B = [1; 3];
>> C = [1 2];
>> D = 0;
>> [num, den] = ss2tf(A, B, C, D)
num =
         0    7.0000   28.0000
den =
    1.0000    7.0000   14.0000
The result is same as the one derived above.
Example 3.45. Determine the transfer function G(s) = Y(s)/R(s), for the following

system representation in state space form.

x�  = 

0 3 7 0

0 0 1 0

0 0 0 1

5 6 9 5

 
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 
 
 − −  

x + 

0

5

7

2

 
 
 
 
 
  

 r

y = [1  3  6  5] x

Solution.
A = [0 3 5 0; 0 0 1 0; 0 0 0 1; – 5 – 6 8 5];
B = [0; 5; 7; 2];
C = [1 3 7 5];
D = 0;
statespace = ss(A, B, C, D)
a =
                            x1            x2           x3           x4
           x1              0              3            5            0
           x2              0              0            1            0
           x3              0              0            0            1
           x4           – 5           – 6            8            5
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 b =
                        u1
           x1            0
           x2            5
           x3            7
           x4            2
 c =
                         x1           x2           x3          x4
           y1            1            3            7            5
d =
                        u1
           y1            0
 Continuous-time model.
[A, B, C, D] = tf2ss(num,den);
G = tf(num, den)

Transfer function:
s^4 + 3 s^3 + 10 s^2 + 5 s + 6
---------------------------------------
 s^5 + 7 s^4 + 8 s^3 + 6 s^2
Example 3.46. Determine the transfer function and poles of the system represented

in state space as follows using MATLAB.

x�  = 
9 3 1
3 2 0
6 8 2

− − 
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 + 
1
2
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 
  

 u(t)

y = [2   9  – 12]x; x(0) = 
0
0
0

 
 
 
  

Solution.
% MATLAB Program

>> A = [8 – 3 4; – 7 1 0; 3 4 – 7]
A =
       8    – 3       4
    – 7       1       0
       3       4    – 7
>> B = [1; 3; 8]
B =
     1
     3
     8
>> C = [1 7 – 2]
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C =
     1     7    – 2
>> D = 0
D =
     0
>> [numg, deng] = ss2tf(A, B, C, D, 1)
numg =
  1.0e + 003 *
         0    0.0060    0.0730   – 2.8770
deng =
    1.0000   – 2.0000  – 88.0000   33.0000
>> G = tf(numg, deng)
Transfer function:
  6 s^2 + 73 s – 2877
-----------------------------
s^3 – 2 s^2 – 88 s + 33
 >> poles = roots(deng)
poles =
    10.2620
   – 8.6344
      0.3724
Example 3.47. Represent the system shown in Fig. E 3.47 using MATLAB in
(a) state space in phase-variable form

(b) state space in model form.

)9s)(7s)(5s)(2s(

)6s)(4s(10

++++
++

R(s) C(s)
+

–

Fig. E 3.47

Solution.
 % MATLAB Program

‘(a) Phase-variable form’
‘G(s)’
G = zpk ([– 4  – 6] , [– 2 – 5 – 7 – 9], 10)
‘T(s)’
T = feedback (G, 1, – 1)
[numt, dent] = tfdata (T, ‘V’);
‘controller canonical form determination’
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[AC, BC, CC, DC] = tf2ss (numt, dent)
A1 = flipud (AC);
‘Phase – variable form representation’
APV = fliplr (A1)
BPV = flipud (BC)
CPV = fliplr (CC)
‘(b) Modal form’
‘G(s)’
G = zpk ([– 4  – 6] , [– 2 – 5 – 7 – 9], 10)
‘T(s)’
T = feedback (G, 1, – 1)
[numt, dent] = tfdata (T, ‘V’);
‘controller canonical form’
[AC, BC, CC, DC] = tf2ss (numt, dent)
‘Modal form’
[A, B, C, D] = canon (AC, BC, CC, DC, ‘modal’)
Computer response:
(a) Phase – variable form
Ans. =
G(s)
Zero/pole/gain:
      10 (s + 4) (s + 6)
------------------------------------
(s + 2) (s + 5) (s + 7) (s + 9)
Ans. =
T(s)
Zero/pole/gain:
             10 (s + 6) (s + 4)
------------------------------------------------------
(s + 2.69) (s + 5.425) (s^2 + 14.88s + 59.61)
Ans =
Controller canonical form determination
AC =
  – 23.0000    – 195.0000       – 701.0000     – 870.0000
     1.0000              0                        0                     0
     0                  1.0000                   0                     0
     0                       0                    1.0000                0
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BC =
     1
     0
     0
     0
CC =
         0   10.0000  100.0000  240.0000
DC =
     0
Ans. =
Phase – variable form representation
APV =
         0             1.0000                   0                0
         0                  0                   1.0000           0
         0                  0                      0                 1.0000
 – 870.0000    – 701.0000     – 195.0000     – 23.0000
BPV =
     0
     0
     0
     1
CPV =
  240.0000        100.0000            10.0000          0
(b) Modal form
Ans.=
G(s)
 Zero/pole/gain:
    10 (s + 4) (s + 6)
-----------------------------------
(s + 2) (s + 5) (s + 7) (s + 9)
Ans.=
T(s)
 Zero/pole/gain:
             10 (s + 6) (s + 4)
--------------------------------------------------
(s + 2.69) (s + 5.425) (s^2 + 14.88s + 59.61)
Ans.=
Controller canonical form
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AC =
  – 23.0000          – 195.0000         – 701.0000         – 870.0000
       1.0000                 0                        0                          0
      0                           1.0000               0                          0
      0                           0                         1.0000                0
BC =
     1
     0
     0
     0
CC =
         0               10.0000                 100.0000                240.0000
DC =
     0
Ans.=
Modal form
A =
   – 7.4425            2.0551             0                      0
   – 2.0551         – 7.4425             0                      0
      0                     0                   – 5.4249             0
      0                     0                      0                   – 2.6902
B =
    – 5.8222
  – 13.9839
       7.1614
       0.2860
C =
   – 0.1674           0.1378              0.0504               2.0676
D =
     0
Example 3.48. Plot the step response using MATLAB for the following system repre-

sented in state space, where u(t) is the unit step.

x�  = 
5 2 0
0 9 1
0 0 3

− 
 − 
 − 

 + 
0
2
1

 
 
 
  

 u(t)

y = [0  1  1]x; x(0) = 
0
0
0

 
 
 
  
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Solution.
>> A = [– 5 2 0; 0 – 9 1; 0 0 – 3];
>> B = [0; 2; 1];
>> C = [0 1 1];
>> D = 0;
>> S = ss(A, B, C, D)
 a =
                          x1           x2           x3
           x1          – 5            2             0
           x2            0          – 9             1
           x3            0            0           – 3
 b =
                        u1
           x1            0
           x2            2
           x3            1
 c =
                        x1           x2           x3
           y1            0            1            1
 d =
                        u1
           y1            0
 Continuous-time model.
>> step(S)
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 Fig. E 3.48.
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Example 3.49.
A control system is defined by

1

2

x

x
 
 
 

�

�
 = 

0 1

30 7
 
 − − 

1

2

x

x
 
 
 

 + 
1 1

0 1
 
 
 

 1

2

u

u
 
 
 

1

2

y

y
 
 
 

 = 
1 0

0 1
 
 
 

1

2

x

x
 
 
 

Plot the four sets of Bode diagrams for the system [two for input1, and two for input 2]
using MATLAB.

Solution. There are 4 sets of Bode diagrams (2 for input1 and 2 for input 2)
>> %Bode Diagrams
>> A = [0 1; – 30 – 7];
>> B = [1 1; 0 1];
>> C = [1 0; 0 1];
>> D = [0 0; 0 0];
>> bode(A, B, C, D)
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Fig. E 3.49 Bode diagrams.

Example 3.50. Draw a Nyquist plot for a system defined by

1

2

x

x
 
 
 

�

�
 = 

0 1

30 7
 
 − 

 1

2

x

x
 
 
 

 + 
0

30
 
 
 

 u

y = [1 0] 1

2

x

x
 
 
 

 + [0]u

using MATLAB.

Solution.  Since the system has a single input u and a single output y, a Nyquist plot
can be obtained by using the command nyquist (A, B, C, D) or nyquist (A, B, C, D, 1).
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>> %MATLAB Program
>> A = [0 1; – 30 7];
>> B = [0; 30];
>> C = [1 0];
>> D = [0];
>> nyquist(A, B, C, D)
>> grid
>> title(‘Nyquist plot’)
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Fig. E 3.50   Nyquist plot.

Example 3.51. A control system is defined by

   1

2

x

x
 
 
 

�

�
 = 

1 1

7 0

− − 
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2

x

x
 
 
 

 + 
1 1

1 0
 
 
 

 1

2

u

u
 
 
 

1

2

y

y
 
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 = 
1 0

0 1
 
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 1
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x

x
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 + 
0 0

0 0
 
 
 
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2

u

u
 
 
 

The system has two inputs and two outputs.  The four sinusoidal output-input relation-
ships are given by

1

1

y (j )
u (j )

ω
ω

, 2

1

y (j )
u (j )

ω
ω

, 1

2

y (j )
u (j )

ω
ω

, and 2

2

y (j )
u (j )

ω
ω

Draw the Nyquist plots for the system by considering the input u1 with input u2 as zero
and vice versa.

Solution.  The four individual plots are obtained by using the MATLAB command nyquist
(A, B, C, D).

>> %MATLAB Program
>> A = [– 1 – 1; 7 0];
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>> B = [1 1 ; 1 0];
>> C = [1 0 ; 0 1];
>> D = [0 0 ; 0 0];
>> nyquist(A, B, C, D)
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Fig. E 3.51 Nyquist plots.

Example 3.52. Obtain the unit-step response, unit-ramp response, and unit-impulse
response of the following system using MATLAB

1

2

x

x
 
 
 

�

�
 = 

1 1.5

2 0

− − 
 
 

1

2

x

x
 
 
 

 + 
1.5

0
 
 
 

u

y = [1 0] 1

2

x

x
 
 
 

where u is the input and y is the output.
Solution.
>> %Unit-step response
>> A = [– 1 – 1.5 ; 2  0];
>> B = [1.5 ; 0];
>> C = [1  0];
>> D = [0];
>> [y, x, t] = step(A, B, C, D);
>> plot(t, y)
>> grid
>> title(‘Unit-step response’)
>> xlabel(‘t Sec’)
>> ylabel(‘Output’)



MATLAB TUTORIAL 231

0.6

0.5

0.4

0.3

0.2

0.1

0

– 0.1

– 0.2

– 0.3
0 2 4 6 8 10 12

t Sec

Unit-Step response

O
ut

pu
t

Fig. E 3.52(a) Unit-step response.

>> %Unit-ramp response

>> A = [– 1 – 1.5 ; 2 0];
>> B = [1.5 ; 0];
>> C = [1 0];
>> D = [0];
>> % New enlarged state and output equations
>> AA = [A zeros (2, 1); C 0];
>> BB = [B; 0];
>> CC = [0 1];
>> DD = [0];
>> [z, x, t] = step (AA, BB, CC, DD);
>> x3= [0 0 1]*x’; plot (t, x3, t, t, ‘–’)
>> grid
>> title (‘Unit-ramp response’)
>> xlabel (‘t Sec’)
>> ylabel (‘Output and unit-ramp input’)
>> text (12, 1.2, ‘Output’)



232 ANALYSIS AND DESIGN OF CONTROL SYSTEMS USING MATLAB

20

18

16

14

12

10

8

6

4

2

0
0 5 10 15 20

t Sec

Unit-ramp response

O
ut

pu
t 

an
d 

un
it-

ra
m

p 
in

pu
t

Output

Fig. E 3.52(b) Unit-ramp response.

>> %Unit-impulse response
>> A = [– 1 – 1.5 ; 2 0];
>> B = [1.5; 0];
>> C = [1 0];
>> D = [0];
>> impulse (A, B, C, D)
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Fig. E 3.52(c) Unit-impulse response.

Example 3.53. Obtain the unit-step curves for the following system using MATLAB.

   1

2

x

x
 
 
 
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1 1

7 0
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1
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Solution.
>> %MATLAB Program
>> A = [– 1, – 1; 7 0];
>> B = [1 1 ; 1 0];
>> C = [1 0 ; 0 1];
>> D = [0 0 ; 0 0];
>> step(A, B, C, D)
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Fig. E 3.53 Step Response.

Example 3.54. Obtain the unit-step response and unit-ramp response of the following
system using MATLAB.

1
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 + [0]u

Solution.
>> %MATLAB Program
>> A = [– 5 – 25 – 5; 1 0 0; 0 1 0];
>> B = [1; 0; 0];
>> C = [0 25 5];
>> D = [0];
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 >> [y, x, t] = step(A, B, C, D);
>> plot(t, y)
>> grid
>> title(‘Unit-response’)
>> xlabel(‘t Sec’)
>> ylabel(‘Output y(t)’)
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Fig. E 3.54(a) Unit-step response.

Unit-ramp response:

 AA = 

5 25 5 0

1 0 0 0

0 1 0 0

0 25 5 0

− − − 
 
 
 
 
  

 = 

 
 
 
 
 
  

0

A 0

0

0 25 5 0

 = A zeros(2, 1); C  0]

BB = 

1

0 B
=

0

0 0

   
   
   
   
   
      

CC = [0 25 5 0] = [C 0]
>> %MATLAB Program

>> A = [– 5 – 25 – 5 ; 1 0 0 ; 0 1 0];
>> B = [1 ; 0 ; 0];
>> C = [0 25 5];
>> D = [0];
>> AA = [A zeros(3, 1); C 0];
>> BB = [B; 0];
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>> CC = [C 0];
>> DD = [0];
>> t = 0:0.01:5;
>> [z, x, t] = step(AA, BB, CC, DD, 1, t);
>> P = [0 0 0 1]*x’;
>> plot(t, P, t, t)
>> grid
>> title(‘Unit-ramp response’)
>> xlabel(‘t Sec’)
>> ylabel(‘Input and output’)
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Fig. E 3.54(b) Unit-ramp response.

Example 3.55. A control system is given by

1
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Determine the controllability and observability of the system using MATLAB.

Solution:
>> %MATLAB Program

>> A = [3 0 0; 0 1 0; 0 4 5];
>> B = [0 2; 2 0; 0 1];
>> C = [1 2 0; 0 1 0];
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>> D = [0 0; 0 0];
>> rank ([B A*B A^2*B])
ans =
     3
>> rank ([C’ A*C’ A^2*C’])
ans =
     3
>> rank ([C*B C*A*B C*A^2*B])
ans =
     2
From the above, we observe that the system is state controllable but not completely

observable. It is output controllable.
Example 3.56. Consider the system
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The output is given by

y = [1 1 1] 
1
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x
x

 
 
 
  

(a) determine the observability of the system using MATLAB
(b) show that the system is completely observable if the output is given by

1
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using MATLAB.
Solution.
>> %MATLAB Program
>> A = [3 0 0; 0 1 0; 0 3 2];
>> C = [1 1 1];
>> rank ([C′ A′*C′ A′^2*C′])
ans =
     3
>> A = [3 0 0; 0 1 0; 0 3 2];
>> C = [1 1 1; 1 3 2];
>> rank ([C′ A′*C′ A′^2*C′])
ans =
     3
From the above, we observe that the system is observable and controllable.
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Example 3.57. Consider the following state equation and output equation
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Determine if the system is completely state controllable and completely observable using
MATLAB.

Solution.  The controllability and observability of the system can be obtained by exam-
ining the rank condition of

[B AB A2B] and [C′′′′′ A′′′′′C′′′′′ (A′′′′′)2C′′′′′]
>> %MATLAB Program

>> A = [– 1 – 3 – 2; 0 – 2 1; 1 0 – 1];
>> B = [3; 0; 1];
>> C = [1 1 0];
>> D = [0];
>> rank ([B A*B A^2*B])
ans =
     3
>> rank ([C′ A′*C′ A′^2*C′])
ans =
     3
We observe the rank of [B AB A2B] is 3 and the rank of [C′′′′′ A′′′′′*C′′′′′ (A′′′′′) 2*C′′′′′] is 3, the

system is completely state controllable and observable.
Example 3.58. Diagonalize the following system using MATLAB.

x�  = 

7 5 5
15 6 12

8 3 4

− − 
 − 
 − − 

x + 

1
4
2

− 
 
 
  

 r

 y = [1   – 3    5] x
Solution.
 % MATLAB Program:
A = [– 7 – 5 5 ; 15 6 – 12 ; – 8 – 3 4];
B = [– 1; 4; 2];
C = [1; – 3; 5];
[P, D] = eig (A);
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Ad = inv (P) * A * P
Bd = inv (P) * B
Cd = inv (P)* C
Computer response:
>> Ad = inv (P)*A*P

Ad =
   2.4555 + 6.0296i – 0.0000 – 0.0000 –  0.0000 + 0.0000i

  – 0.0000 + 0.0000i  2.4555 – 6.0296i – 0.0000 – 0.0000i
   0.0000 + 0.0000i   0.0000 – 0.0000i – 1.9110 – 0.0000i

>> Bd = inv (P)*B
Bd =
   1.8397 + 2.1026i
   1.8397 – 2.1026i

   3.3254 + 0.0000i
Cd =
  – 2.4324 + 5.4360i
  – 2.4324 – 5.4360i

   2.6093 + 0.0000i
Example 3.59. Determine the eigenvalues of the following system using MATLAB.

x�  = 
0 2 0
0 2 9
2 2 5

 
 − 
 − 

x + 

0
0
2

 
 
 
  

 r

 y = [0 0 1] x
Solution.
>> A = [0 2 0; 0 2 – 7; – 2 2 5]; %Define the matrix above
>> eig (A) % Calculate the eigenvalues of matrix A.
ans =
   2.0000
   2.5000 + 3.4278i
   2.5000 - 3.4278i

Example 3.60. For the following forward path of a unity feedback system in state space
representation, determine if the closed-loop system is stable using the Routh-Hurwitz criterion
and MATLAB.

x�  = 
 
 
 
 − − − 

0 2 0
0 1 9
2 4 6

x + 

0
0
2

 
 
 
  

r

y = [0 1 1] x.
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Solution.
>> A = [0 2 0; 0 1 9; – 2 – 4 – 6]; % Define the matrix
>> B = [0; 0; 2]; % Define the matrix.
>> C = [0 1 1]; % Define the matrix
>> D = 0;
>> ‘G’;
>> G = ss (A, B, C, D); %Create a state-space model
>> ‘T ’;
>> T = Feedback (G, 1);
>> ‘Eigenvalues of T are’;
>> ssdata (T); % Create a state-space model
>> eig (T) % Determine Eigenvalues
ans =
ans =
  – 0.8872
  – 3.0564 + 5.5888i
  – 3.0564 – 5.5888i

The closed loop system is stable as the numbers are all negative with regards to the axis
coordinate system used for Routh-Hurwitz. Negative values are stable, positive values are un-
stable.

Example 3.61. For the following path of a unity feedback system in state space represen-
tation, determine if the closed-loop system is stable using the Routh-Hurwitz criterion and
MATLAB.

x�  = 

0 1 0
0 1 7
3 4 6

 
 
 
 − − − 

x + 

0
0
2

 
 
 
  

u

 y = [0 1 1] x.
Solution.
% MATLAB Program
A = [0 1 0; 01 7; – 3 – 4 – 6];
B = [0 0 2];
C = [0 1 1];
D = 0;
‘G’
G = ss (A, B, C, D)
‘T ’
T = feedback (G, 1)
‘Eigenvalues of T are’
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ssdata (T);
eig (T)
Computer response:
ans =
G

a =
                         x1           x2           x3
           x1            0            1             0
           x2            0            1             5
           x3         – 3         – 4          – 5
b =
                        u1
           x1            0
           x2            0
           x3            1
c =
                          x1           x2           x3
           y1            0            1            1
d =
                        u1
           y1           0
 Continuous-time model.
ans =
T
a =

 x1 x2   x3
   x1 0 1   0
   x2 0 1   7
   x3 – 3 – 6 – 8
b =
       u1
   x1   0
   x2   0
   x3   2
c =
       x1   x2   x3
   y1  0  1  1
d =
       u1
   y1   0
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Continuous-time model:

ans =
Eigenvalues of T are
ans =
– 0.7112
– 3.1444 + 4.4317i
– 3.1444 – 4.4317i

�������

The classical methods of control systems engineering using MATLAB including the root
locus analysis and design,  frequency response methods of analysis,  Bode, Nyquist, and Nichols
plots, second order systems approximations, phase and gain margin and bandwidth, state space
variable method, and controllability and observability are covered in this chapter. With this
foundation of basic application of MATLAB, the Chapter provides opportunities to explore ad-
vanced topics in control systems engineering.

Extensive worked examples are included with a great number of exercise problems to
guide the student to understand and as an aid for learning about the analysis and design of
control systems using MATLAB.

PROBLEMS

1. [Reduction of multiple subsystems]
Reduce the system shown in Fig. P 3.1 to a single transfer function, T(s) = C(s)/R(s)
using MATLAB. The transfer functions are given as

G1(s) = 1/(s + 3)
G2(s) = 1/(s2 + 3s + 5)
G3(s) = 1/(s + 7)
G4(s) = 1/s
G5(s) = 7/(s + 5)
G6(s) = 1/(s2 + 3s + 5)
G7(s) = 5/(s + 6)
G8(s) = 1/(s + 8)
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R(s)

C(s)

+

–

+

–

G1(s) G3(s)

G8(s)

G2(s) G4(s)

G6(s)

G7(s)

G5(s)

+

+

+
+

+

Fig. P 3.1

2. Obtain the unit-step response plot for the unity-feedback control system whose open
loop transfer function is

G(s) = 8
( 1)( 3)s s s+ +

using MATLAB.  Determine also the rise time, peak time, maximum overshoot, and
settling time in the unit-step response plot.

3. Obtain the unit-acceleration response curve of the unity-feedback control system whose
open loop transfer function is given by

   G(s) = 
2

8( 1)
( 3)
s

s s
+
+

using MATLAB.  The unit-acceleration input is defined by

   r(t) = 
1
2

t2 (t ≥ 0)

4. The feed forward transfer function G(s) of a unity-feedback system is given by

G(s) = 
2

2 2

( 3)
( 5)( 4)

k s
s s

+
+ +

Plot the root loci for the system using MATLAB.
5. For the unity feedback shown in Fig. P 3.5, where

G(s) = 
( 3)( 4)( 5)

K
s s s s+ + +

Obtain the following:
(a) display a root locus and pause
(b) draw a close-up of the root locus where the axes go from – 2 to 0 on the real axis

and – 2 to 2 on the imaginary axis
(c) overlay the 15% overshoot line on the close-up root locus
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(d) allow you to select interactively the point where the root locus crosses the 15%
overshoot line, and respond with the gain at that point as well as all of the closed-
loop poles at that gain

(e) find the step response at the gain for 15% overshoot.

R(s) +

–

G(s)
C(s)

Fig. P 3.5

6. For the system shown in Fig. P 3.6, determine the following using MATLAB
(a) display a root locus and phase
(b) display a close-up of the root locus where the axes go from – 2 to 2 on the real axis

and – 2 to 2 on the imaginary axis
(c) overlay the 0.707 damping ratio line on the close-up root locus
(d) obtain the step response at the gain for 0.707 damping ratio.

R(s) +

–

C(s)

2

(s 25)

(s 10s 100)

+
+ +

K

s(s 3) (s 5) (s 7)+ + +

Fig. P 3.6

7. Write a program in MATLAB to obtain a Bode plot for the transfer function

G(s) = 
3 2

4 3 2

(5 51 20 400)
( 12 60 300 250)

s s s
s s s s

+ + +
+ + + +

8. Write a program in MATLAB for the unity feedback system with G(s) = K/[s(s + 7)
(s + 15)] so that the value of gain K can be input. Display the Bode plots of t a system
for the input value of K. Determine and display the gain and phase margin for the
input value of K.

9. Write a program in MATLAB for the system shown in Fig. P 3.9 so that the value of K
can be input (K = 40).

R(s) +

–
)20s4s(s

)3s(K
2 ++

+ C(s)E(s)

Fig. P 3.9

(a) Display the closed-loop magnitude and phase frequency response for unity feedback
system with an open-loop transfer function, KG(s).
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(b) Determine and display the peak magnitude, frequency of the peak magnitude, and
bandwidth for the closed-loop frequency response for the input value of K.

10. Write a program in MATLAB for a unity feedback system with the forward-path trans-
fer function given by

G(s) = 2

7( 3)
( 4 12)

s
s s s

+
+ +

(a) Draw a Nichols plot of an open-loop transfer function.
(b) The user can read the Nichols plot display and enter the value of Mp.
(c) Obtain the closed-loop magnitude and phase plots.
(d) Display the expected values of percent overshoot, settling time, and peak time.
(e) Plot the closed-loop step response.

11. For the system shown in Fig. P 3.11, write a program in MATLAB that will use an
open-loop transfer function G(s).

R(s) +

–

80(s 2)
s(s 1) (s 3)

+
+ +

C(s)

System 1

R(s) +

–

40(s 3)(s 5)

s(s 2)(s 4) (s 6)

+ +
+ + +

E(s)

System 2
Fig. P 3.11

(a) Obtain a Bode plot
(b) Estimate the percent overshoot, settling time, and peak time
(c) Obtain the closed-loop step response.

12. Write a program in MATLAB for a unity-feedback system with

G(s) = 2 2

( 3)
( 5 80)( 4 20)

K s
s s s s

+
+ + + +

(a) plot the Nyquist diagram
(b) display the real-axis crossing value and frequency.

13. Write a program in MATLAB to obtain the Nyquist and Nichols plots for the following
transfer function for k = 30.

G(s) = 
( 1)( 2 5 ) ( 2 5 )

( 2)( 5)( 7)( 2 7 )( 2 7 )
k s s i s i

s s s s i s i
+ + + + −

+ + + + + + −
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14. Write a program in MATLAB for a unity feedback system with the forward-path trans-
fer function given by

G(s) = 2

7( 3)
( 4 12)

s
s s s

+
+ +

(a) Draw a Nichols plot of an open-loop transfer function.
(b) The user can read the Nichols plot display and enter the value of Mp.
(c) Obtain the closed-loop magnitude and phase plots.
(d) Display the expected values of percent overshoot, settling time, and peak time.
(e) Plot the closed-loop step response.

15. For a unit feedback system with the forward-path transfer function.

G(s) = 
( 3)( 10)

K
s s s+ +

and a delay of 0.5 second, estimate the percent overshoot for K = 40 using a second-
order approximation. Model the delay using MATLAB function pade(T, n). Deter-
mine the unit step response and check the second-order approximation assumption
made.

16. For the control system shown in Fig. 3.16:
(a) plot the root loci of the system
(b) find the value of gain K such that the damping ratio ξ of the dominant closed-loop

poles is 0.5
(c) obtain all the closed-loop poles using MATLAB
(d) plot the unit-step response curve using MATLAB.

Input 
)7s5s(s

K
2 ++

 Output

Fig. P 3.16

17. Fig. P 3.17 shows a position control system with velocity feedback. What is the re-
sponse c(t) to the unit step input ?

)3s(s

80

+
1/s

0.15

–

+

–

+R(s) C(s)

Fig. P 3.17

18. The open-loop transfer function G(s)H(s) of a control system is

G(s)H(s) = 2( 0.5)( 0.5 8)
K

s s s s+ + +
 = 4 3 28.25 4

K
s s s s+ + +

Plot the root loci for the system using  MATLAB.
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19. Design a compensator for the system shown in Fig. P 3.19 such that the dominant

closed-loop poles are located at s = – 1 ± j 3 .

Gc(s) 2s

1+

–

Fig. P 3.19

20. For the control system shown in Fig.3.20:
(a) design a PID control Gc(s) such that the dominant closed-loop poles located at s = – 1

± j1.
(b) select a = 0.6 for the PID controller and find the values of K and b
(c) root-locus plot using MATLAB.

K
s

)bs) (as( ++
)8.0( s

1
2 +

R (s) C (s)
+

– G c(s)

P la n t G (s)P ID  c o n tro ller

Fig. P 3.20

21. Draw a Bode diagram of the open-loop transfer function G(s) of the closed-loop sys-
tem shown in Fig. P 3.21 and obtain the phase margin and gain margin.

)922) (3(

)1(1 8

+++

+

ssss

s
R (s ) C (s )

Fig. P 3.21

22. A block diagram of a process control system is shown in Fig. P 3.22. Find the range of
gain for stability.

sKe

s 1

−

+

Fig. P 3.22

23. For the control system shown in Fig. P 3.23:
(a) draw a Bode diagram of the open-loop transfer function
(b) find the value of the gain K such that the phase margin is 50º
(c) find the gain margin of the system with the gain obtained in (b).
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)2s(s

12

+7.0s

3.0s
K

+
++

–

Fig. P 3.23

24. Obtain the unit-step response and unit-ramp response of the following system using
MATLAB.

1

2

3

x
x
x

 
 
 
  

�

�

�

 = 

5 25 5
1 0 0
0 1 0

− − − 
 
 
  

 
1

2

3

x
x
x

 
 
 
  

 + 

1
0
0

 
 
 
  

u

      y = [0 25 5] 
1

2

3

x
x
x

 
 
 
  

 + [0]u.

25. For the mechanical system shown in Fig. P 3.25, the input and output are the dis-
placement x and y respectively. The input is a step displacement of 0.4 m. Assuming
the system remains linear throughout the transient period and m = 3 kg, c = 3 N-s/m,
and k = 1 N/m, determine the response of the system using MATLAB.

k c
m

y

x

Fig. P 3.25

26. Using MATLAB, write the state equations and the output equation for the phase-
variable representation for the following systems in Fig. P 3.26.

5s7s2ss

7s3
234 ++++

+R(s) C(s)

(a)

2345

234

s6s8s7s

6s5s10s3s

+++
++++R(s) C(s)

(b)
Fig. P 3.26

27. Determine the transfer function and poles of the system represented in state space as
following using MATLAB.
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x�  = 
9 5 2
4 1 0
3 5 7

− 
 − 
 − 

x + 
2
5
7

 
 
 
  

u(t)

y = [1 7 – 2] x ; x(0) = 

0
0
0

 
 
 
  

28. Obtain the root locus diagram of a system defined in state space using MATLAB.  The
system equations are

x�  = Ax + Bu and y = Cx + Du and u = r – y
where r is the input and y is the output.
The matrices A, B, C, and D are:

A = 

0 1 0
0 0 1

150 50 15

 
 
 
 − − − 

 ; B = 

0
1

15

 
 
 
 − 

C = [1 0 0] ; D = [0]
29. Obtain the Bode diagram of the following system using MATLAB.

1

2

x

x
 
 
 

�

�
 = 

0 1
30 7

 
 − 

1

2

x

x
 
 
 

 + 
0

30
 
 
 

u

      y = [1 0] 1

2

x

x
 
 
 

The input of the system is u and the output is y.
30. A control system is defined by

  1

2

x

x
 
 
 

�

�
 = 

1 2
7.5 0
− − 

 
 

 1

2

x

x
 
 
 

 + 
1 1
1 0

 
 
 

 1

2

u

u
 
 
 

1

2

y

y
 
 
 

 = 
1 0
0 1

 
 
 

 1

2

x

x
 
 
 

0 0
0 0

 
 
 

 1

2

u
u

 
 
 

Write a MATLAB program to obtain the following plots:
(a) two Nyquist plots for the input u1 in one diagram
(b) two Nyquist plots for the input u2 in one diagram.

31. Obtain the unit-ramp response of the system defined by

   1

2

x

x
 
 
 

�

�
 = 

0 2
3 1

 
 − − 

 1

2

x

x
 
 
 

 + 
0
2

 
 
 

u

y = [1 0] 1

2

x

x
 
 
 

where u is the unit-ramp input. Use lsim command to obtain the response.
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32. Obtain the response curves y(t) using MATLAB for the following system.

1

2

x

x
 
 
 

�

�
 = 

– 1 1
– 1 0

 
 
 

 1

2

x

x
 
 
 

 + 
0
2

 
 
 

u

y = [1 0] 1

2

x

x
 
 
 

The input u is given by:
(a) u= unit-step input
(b) u = e–t

The initial state x(0) = 0.
33. Plot the step response using MATLAB for the following system represented in state

space, where u(t) is the unit step.

x�  = 

3 2 0
0 7 1
0 0 4

− 
 − 
 − 

x + 

0
1
1

 
 
 
  

u(t)

y = [0 1 1] x ; x(0) = 

0
0
0

 
 
 
  

34. Diagonalize the following system using MATLAB.

x�  = 
10 5 7
15 4 12
8 3 6

− − 
 − 
 − − 

x + 

1
2
3

 
 
 
  

r

y = [1 – 2 3]x
35. Determine to unit-ramp response of the system defined by

1

2

x

x
 
 
 

�

�
 = 

0 2
3 3

 
 − − 

 1

2

x

x
 
 
 

 + 
0
2

 
 
 

u

y = [1 0] 1

2

x

x
 
 
 

Using MATLAB where u is the unit-ramp input. Use lsim command in MATLAB.
36. Obtain the unit-impulse response of the following system using MATLAB

1

2

x

x
 
 
 

�

�

 = 
0 1
1 2

 
 − − 

 1

2

x

x
 
 
 

 + 
0
1

 
 
 

u

y = [1 1] 1

2

x

x
 
 
 

 + [0]u
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37. A control system is defined by

1

2

3

x
x
x

 
 
 
  

�

�

�

 = 
1 3 3
0 2 1
2 0 1

− − − 
 − 
 − 

 
1

2

3

x
x
x

 
 
 
  

 + 

3
0
1

 
 
 
  

u

y = [1 2 0] 
1

2

3

x
x
x

 
 
 
  

Determine the controllability and observability of the system using MATLAB.
38. Determine the eigenvalues of the following system using MATLAB.

x�  = 
0 1 0
0 1 5
2 1 3

 
 − 
 − 

x + 

0
0
1

 
 
 
  

u

y = [0 0 1]x.
39. For the following path of a unity feedback system in state space representation, de-

termine if the closed-loop system is stable using the Routh-Hurwitz criterion and
MATLAB.

 x�  = 
0 1 0
0 1 5
3 4 5

 
 
 
 − − − 

x + 

0
0
1

 
 
 
  

u

  y = [0 1 1]x.
40. Consider the differential equation system given by

y��  = 4 y�  + 3y = 0 ; y(0) = 0.2 ; y� (0) = 0.1

Find the state-space equation for the system. Also, obtain the response y(t) of the
system subject to the given initial  conditions using MATLAB.
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